
www.manaraa.com

University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2014

Matrix Factorization: Nonnegativity, Sparsity and
Independence
Vamsi Potluru

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Potluru, Vamsi. "Matrix Factorization: Nonnegativity, Sparsity and Independence." (2014). https://digitalrepository.unm.edu/
cs_etds/41

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/41?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/41?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

www.manaraa.com

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Vamsi Krishna Potluru

Computer Science

Thomas Hayes

Vince Calhoun

Terran Lane

Barak Pearlmutter

www.manaraa.com

Matrix Factorization : Nonnegativity, Sparsity
and Independence

by

Vamsi Krishna Potluru

M.S., Computer Science, University of New Mexico, 2008

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2014

www.manaraa.com

iii

c©2014, Vamsi Krishna Potluru

www.manaraa.com

iv

Dedication

Dattatreya

www.manaraa.com

v

Acknowledgments

I would like to thank my advisors: Prof’s Barak Pearlmutter, Vince Calhoun, Thomas
Hayes and Shuang Luan. Also, I would like to acknowledge the members of the brain and
computational (BCL) lab, Hamilton institute, MIALAB at the Mind Research Network
(MRN), and the Mitsubishi Electric Research Labs (MERL).

www.manaraa.com

vi

Contents

List of Figures x

List of Tables xvi

1 Introduction 1

1.0.1 Big data . 4

1.0.2 Distributed systems . 4

1.1 Background . 6

1.1.1 Least Absolute Shrinkage and Selection Operator (LASSO) . . . 6

1.1.2 Support Vector Machine (SVM) 6

1.1.3 Nonnegative Least Squares (NNLS) 7

1.1.4 Nonnnegative Matrix Factorization (NMF) 8

1.2 Contributions of this dissertation . 9

2 Nonnegativity — Structural connections 10

2.1 Our Reduction from TNNLS to SVM 14

2.1.1 Implementation issues . 15

www.manaraa.com

Contents vii

2.2 Primal SVM solver . 16

2.2.1 Bounds . 17

2.3 Experiments . 18

2.3.1 Random problems . 20

2.3.2 Phantom tumor dataset . 21

2.3.3 Real tumor datasets . 22

2.3.4 Discussion . 24

2.4 Dual SVM solver . 24

2.5 Experiments . 26

2.6 Connections between NMF and SVM 27

2.6.1 SVM as matrix factorization . 27

2.6.2 NMF reduced to sequence of SVMs 30

2.6.3 Our algorithms — Sign-insensitive Kernel SVMs 30

2.6.4 Nonnegative Quadratic Programming 33

2.6.5 Decomposition . 36

2.6.6 Soft Margin SVM . 39

2.6.7 Bias . 40

2.6.8 Fixed points . 41

2.6.9 Asymptotic convergence . 42

2.6.10 Adapting NMF algorithms for SVM 43

2.6.11 Power methods . 43

2.7 Experiments . 44

www.manaraa.com

Contents viii

2.7.1 Proofs . 46

2.8 Conclusions and Future Work . 51

3 Sparsity — Matrix factorization 53

3.1 Preliminaries and Previous Work . 54

3.1.1 Nonnegative Matrix Factorization 55

3.1.2 Sparse Nonnegative Matrix Factorization 56

3.2 The Sequential Sparse NMF Algorithm 58

3.2.1 Sparse-opt . 59

3.2.2 Sequential Approach —Block Coordinate Descent 60

3.2.3 SSNMF Algorithm for Sparse NMF 61

3.3 Implementation Issues . 62

3.4 Experiments and Discussion . 63

3.4.1 Datasets . 63

3.4.2 Comparing Performances of Core Updates 64

3.4.3 Comparing Overall Performances 65

3.4.4 Main Results . 67

3.5 Connections to Related Work . 68

3.6 Bi-Sparse NMF . 69

3.7 Conclusions . 70

4 Independence — A closer look 71

4.1 Review and critique of the presented evidence 71

www.manaraa.com

Contents ix

4.2 Experiments on synthetic data: boxes 73

4.3 The statistical properties of synthetic data [28] 74

4.4 Boxes revisited . 77

4.5 Sparsity and sources that are mixture of Gaussians 79

4.6 ICA of sources with mixture of Gaussians distribution 81

4.7 On the definition of sparsity . 84

4.8 On the application of ICA to fMRI . 84

4.9 Conclusions . 85

5 Conclusions and Future Work 88

Bibliography 90

www.manaraa.com

x

List of Figures

1.1 Estimated growth of global data. 5

1.2 Radiation dosage for cancer treatment involves the solution of NNLS

problems. (Left) We plot 12 of 35 slices of a C-shaped tumor. The re-

quired dosage to target the tumor is shown in Red. (Right) The achieved

dosage using NNLS is shown. 7

2.1 We illustrate two cases where SVM gives us no speed up(left) and the

other case where it does(right). The approximate hyperplane which is

output by the SVM solver is shown in blue and the threshold hyperplane

whether we accept a point as a non-support is given by the line in green.

Parameters C, ε have to be fed in to the SVM solver. A priori, we have

to trade-off high values of C and low values of ε with computation time.

The best values of these parameters with respect to computation time

and correctness of solution depend on the distribution of the data. This

is illustrated in the figure. We plot two dimensional points on a plane in

each figure. If the data is too clustered along the maximum-margin hy-

perplane(left) and the values of C, ε and δ are not set properly, we might

end up declaring that all points are potentially supports after running the

SVM solver. A better distribution of data would result in the case(right)

where we prune the number of potential supports thereby reducing the

size of the original problem. 16

2.2 Dose profiles of proton and antiproton beams 19

www.manaraa.com

List of Figures xi

2.3 We plot the running time for all 6 approaches. Lines with filled markers

correspond to NNLS solvers and hollow markers correspond to NNLS

solvers initialized by the OCAS solver and our reduction technique. The

x-axis is indexed by i, which controls the size of the input matrix, which

is 300i× 200i. 21

2.4 We plot running times for FNNLS and PQN-NNLS and their correspond-

ing OCAS initialized solvers. The problem size is fixed at 1200 × 800

and we vary the density from 0.1 to 1.0. These are the mean times for 10

runs at each density level. 22

2.5 Running times on the different datasets using the solvers FNNLS, PQN-

NNLS and RAND-PQN-NNLS and their corresponding OCAS initial-

ized counterparts can be obtained by multiplying the corresponding entry

with the scaling factor. Comparison between running times across differ-

ent NNLS solvers should be taken with a grain of salt for the stopping

criterion for each solver is potentially different. However, stopping cri-

terion between a solver and its OCAS initialized solver are the same and

thus can be compared. 23

2.6 (Left) Mean running times for each problem size where the elements of

the matrix W and vector x are drawn uniformly at random from [0, 1].

The running times for the solvers should be taken with a grain of salt be-

cause of the different stopping criterion used. (Right) Running times ver-

sus objective values for our (FCD) algorithm and the competing FNNLS

and PLB algorithms on the phantom tumor dataset. 27

2.7 Running times versus objective values for FCD and PLB are shown for

the real tumor dataset . 28

www.manaraa.com

List of Figures xii

2.8 The figure shows a paraboloid of the two dimensional objective function

generated by a random construction of the Gram matrix satisfying the

structure in (2.27). MUSIK and M3 algorithms [104] were applied to this

problem starting at α = [1, 1]T . As expected, both algorithms arrive at

the unique solution of the convex problem, however they follow different

routes and the nonnegative kernel SVM takes fewer steps. 35

2.9 The figure shows the average ratio of the number of iterations for M3 to

the number of iterations for MUSIK taken to achieve given tolerance on

the same problem (up is good). Computation is done at error bar points,

the lines connecting them are for the visual guide only. The larger the

problem size the smaller the number of iterations the algorithm needs

compared to M3, which can be up to 4 times less. Since the running time

per iteration is comparable for both algorithms 4 times improvement in

iterations means 4 times faster. Even for 0.01% distance from the solution

our algorithm is more than two times faster on reasonable sized problems. 37

2.10 Differences in convergence on the UCI breast cancer dataset for MUSIK,

M3 and integrated MUSIK (iMUSIK) algorithms. 38

2.11 Rate of convergence of multiplicative updates for breast cancer dataset

using RBF kernel with σ = 3. i is the iteration number, εt is the training

error, εg is the test error. The support vectors have been rearranged for

visualization into active and inactive. 45

2.12 The objective function (2.14) versus training iteration number (log scale)

on the USPS handwritten digits dataset for the M3 and the MUSIK algo-

rithms (down is better). 47

2.13 Percentage of the misclassification versus the training iteration number

(log scale) on the USPS handwritten digits dataset for the M3 and the

MUSIK algorithms (down is better). 48

www.manaraa.com

List of Figures xiii

2.14 Convergence performance on a dataset containing negative and posi-

tive values (shown on the left side) with polynomial kernel of degree 3.

MUSIK algorithm with semiNMF updates from Section 2.6.3 is called

sMUSIK in the legend. 49

3.1 (Left) Features learned from the ORL dataset (Scikit-learn package was

used) with various matrix factorization methods such as principal com-

ponent analysis (PCA), independent component analysis (ICA), and dic-

tionary learning. The relative merit of the various matrix factorizations

depends on both the signal domain and the target application of inter-

est. (Right) Features learned under the sparse NMF formulation where

roughly half the features were constrained to lie in the interval [0.2, 0.4]

and the rest are fixed to sparsity value 0.7. This illustrates the flexibility

that the user has in fine tuning the feature sparsity based on prior domain

knowledge. White pixels in this figure correspond to the zeros in the

features. 54

3.2 Mean running times for Sparse-opt and the Projection-Hoyer are pre-

sented for random problems. The x-axis plots the dimension of the prob-

lem while the y-axis has the running time in seconds. Each of the sub-

figures corresponds to a single sparsity value in {0.2, 0.4, 0.6, 0.8}. Each

datapoint corresponds to the mean running time averaged over 40 runs

for random problems of the same fixed dimension. 64

3.3 Running times for SSNMF and SSNMF+Proj algorithms for the CBCL

face dataset with rank set to 49 and sparsity values ranging from 0.2 to 0.9 65

3.4 Running times for SSNMF and NMFSC and TPC algorithms on the syn-

thetic dataset where the sparsity values range from 0.2 to 0.8 and number

of features is 5. Note that SSNMF and NMFSC are over an order of

magnitude faster than TPC. 66

www.manaraa.com

List of Figures xiv

3.5 Convergence plots for the ORL dataset with sparsity from [0.1, 0.8] for

the NMFSC and SSNMF algorithms. Note that we are an order of mag-

nitude faster, especially when the sparsity is higher. 66

3.6 Running times for SSNMF and NMFSC algorithms for the sMRI dataset

with rank set to 40 and sparsity values of α from 0.1 to 0.8. Note that for

higher sparsity values we converged to a lower reconstruction error and

are also noticeably faster than the NMFSC algorithm. 67

3.7 Features from (Left) NMFSC algorithm and (Right) SSNMF algorithm

(Right) using the ORL face dataset for sparsity values 0.5, 0.6, 0.75. Note

that SSNMF algorithm gives a parts-based representation similar to the

one recovered by NMFSC. 68

4.1 The excess kurtosis of a source as a function of the relative size of the

active region. A Gaussian has zero excess kurtosis. Here as in Exam-

ple 2 of the original paper [28]. The four vertical lines at correspond to

the relative sizes of the small box, the medium box, the large box, and a

very large box corresponding to the maximal kurtosis case. Note that the

medium and large box experiments have near zero excess kurtosis, i.e.,

kurtosis value matching that of a Gaussian. In addition, the pdfs of these

sources are bimodal (see inset figures), ensuring that ICA algorithms de-

signed for unimodal super-Gaussian distributions such as Infomax and

FastICA with standard parameter settings, will likely fail. At the bot-

tom of the figure are the ISI values (see Equation (1)) for the various

algorithms at those four points (see Table 1 for full list). Also note the

best separation performance of Infomax and FastICA for the maximum

kurtosis case, which corresponds to almost the lowest level of sparsity. . 76

www.manaraa.com

List of Figures xv

4.2 The distribution of sources and mixtures for λ = 30%(M2). We plot (A-

C) the distribution of sources, and (D) the contour plot of mixtures for

the case of λ = 30%(M2). Contrary to the claim made in Daubechies et

al., the sources have in fact very peaky and heavy-tailed distributions and

are not at all close to a Gaussian distribution. For comparison purposes

we also present Gaussian distribution curves (blue, A-B). 82

4.3 Sparsity measures for three different coordinate system origins z0. Spar-

sity as measured with respect to different coordinate system origins z0,

as a function of the relative size of the active region. Remark that for a

relative size of zero, only background samples are present and, thus, the

mean of the mixture model coincides with the mean of the background

(and the two sparsity measures correspond at this point). An analogous

observation can be made for a relative size of one, now with respect to

the activity (signal samples). 83

www.manaraa.com

xvi

List of Tables

2.1 Misclassification rates (%) on the breast cancer and sonar datasets af-

ter convergence of the M3, MUSIK (M) and Kernel Adatron (KA) algo-

rithms. Polynomial kernels of degree 4 and 6 and Gaussian kernels of σ

1 and 3 were used. 46

4.1 Source estimates for the four cases indicated in Figure 1 as in Example

2 of the original paper [8]. The algorithms behave as one would expect

if they are selecting for independence. For the bimodal or Gaussian-

like cases, ICA-EBM and Infomax (sub) do well, and for the unimodal

or maximum kurtosis or low sparsity case Infomax-super, FastICA and

ICA-EBM all do extremely well. Numbers in boldface indicate when

separation was good. 86

4.2 Tabulated results for the so-called [28] ICA “promotional material”. Both

Infomax (super) and FastICA do successfully separate (zero indicates

perfect separation) the super-Gaussian sources sa and sb . Note the excess

kurtosis is more than 3 for both sources. Numbers in boldface indicate

when separation was good. 87

www.manaraa.com

1

Chapter 1

Introduction

Matrix factorization arises in a wide range of application domains and is useful for ex-

tracting the latent features in the dataset. Examples include recommender systems, brain

data analysis, and document clustering. Informally, given a matrixX , matrix factorization

seeks to approximate it as a product of factors as follows:

X ≈WH

Sometimes the term “approximate matrix factorization” is used since there may not exist

an exact factorization. In this dissertation, we are interested in matrix factorizations which

impose the following requirements:

• low rank — The rank of the matrices W ,H are set to be much smaller than their

larger dimension. This requirement is particularly useful for learning a lower di-

mensionality representation as given by matrix H . Also, in practice, the low-rank

requirement works well in recommender systems where only a few criteria are as-

sumed to give us a good prediction model for user preferences.

• nonnegativity — The elements of the matrix factors are positive (or zero). This is

a natural constraint on solutions to machine learning problems, for instance when

modeling chemical concentrations in solutions, pixel intensities in images, or radia-

tion dosages for cancer treatment. The nonnegativity constraint on the representation

www.manaraa.com

Chapter 1. Introduction 2

leads to an easier identification of the features, denoted by columns of matrix W ,

present in the corresponding data for the features can only combine additively.

• sparsity — The matrix factors have few non-zeros elements. Sparsity can be im-

posed on either or both of the matrix factors. For instance, when sparsity is imposed

on the matrix W for music data, we can recover “parts” of music such as notes

and chords. On the other hand, when it is imposed on the matrix factor H , it leads

to sparse representations. Examples include learning dictionaries or overcomplete

representations for various types of datasets arising from natural images, music, and

text.

• independence —This assumes that the column vectors of matrixX are random vec-

tors and that they have been generated by linear combinations of the underlying

independent sources whose realizations are represented by the columns of matrix

W . Examples include source separation in the context of speech, music and brain

signals.

We expound on the above requirements with examples from matrix factorization prob-

lems.

Low rank: Singular value decomposition (SVD) is a widely used matrix factorization

technique in many applications including problems in signal processing and machine

learning. The SVD of a matrixX is the following:

X = UDV>

where the matrices U ,V are unitary and D is diagonal. Let us assume, without loss of

generality, that datapoints correspond to the columns of matrix X . An interesting appli-

cation of the SVD is in finding low-rank approximations to a given data matrix. Since a

lot of interesting domains produce high-dimensional data, such as natural images, world

wide web (WWW), and functional magnetic resonance imaging (fMRI), we would like

to find a lower-dimensional representation which captures most of the information and is

also easier to analyze. The Eckart-Young theorem states that for a given rank k, SVD gives

www.manaraa.com

Chapter 1. Introduction 3

the best rank-k approximation to the target matrixX under the Frobenius norm where we

select the columns of U ,V corresponding to the largest k singular values given by D.

The Frobenius norm of a matrix A is simply
√

Tr(A>A). More formally, compute the

follow matrix X̃:

X̃ ≈ UkDkV
>
k

where we have selected the top k singular values of D, denote by Dk, and their corre-

sponding columns in matrices U ,V . The matrix X̃ is the best rank-k approximation to

matrix X according to Eckart-Young theorem. Note that the SVD of a matrix can be

computed in cubic time [42].

Nonnegativity: Factoring a matrix, all of whose entries are nonnegative as a product

of two low-rank nonnegative factors is a fundamental algorithmic challenge and is called

nonnegative matrix factorization (NMF). This has arisen naturally in diverse areas such as

image analysis [65], micro-array data analysis [58], document clustering [114], chemo-

metrics [63], information retrieval [45] and biology applications [13]. For further applica-

tions, see the references in the following papers [1, 25]. Interestingly, adding the nonneg-

ativity constraint substantially increases the complexity of the problem. In sharp contrast

to the SVD problem, it is no longer convex. In practice, the algorithms for NMF despite

guaranteeing only local convergence tend to be surprisingly useful in machine learning

applications.

Sparsity: Sparsity is another commonly imposed assumption that arises naturally from

the principle of parsimony: the simplest explanation is preferred. Sparsity is also moti-

vated by evidence of neuronal coding efficiency and sparse coding in the nervous system.

Sparse representations can help avoid the problem of overfitting while also leading to solu-

tions that are easier to interpret. Applications of sparse signal processing methods include

dictionary learning [77], speech separation [119], and feature learning [48].

Independence: Independent component analysis (ICA) [79, 14, 5, 16] is a widely used

signal processing approach that has been applied to areas including speech separation,

www.manaraa.com

Chapter 1. Introduction 4

communications, and functional magnetic resonance (fMRI) data analysis. Given a set of

linearly mixed observations, recovering the underlying components is an ill-defined prob-

lem. However, the assumption of independence among the sources turns out to be surpris-

ingly powerful and effective for a wide range of problems in various practical domains.

The requirement is to minimize the statistical dependence among the sources, or in other

words, the components of matrix H . This assumption on the factorization has been been

shown to be successful in the “cocktail party problem” where given a mixture of speech

sources, we are able to separate out the individual speakers. This paradigm has been used

to analyze data from other domains such as medical imaging [14]. In particular, for func-

tional magnetic resonance imaging (fMRI) data, applying independence assumption on

the spatial maps of the decomposition results in biologically relevant features present in

the brain activations.

1.0.1 Big data

Data sets are growing in size partly due to the ubiquitous availability of mobile devices,

brain scanners, cameras, microphones, and wireless sensor networks. It has been noted

that as of 2012, around 2.5 quintillion bytes of data were created (Wikipedia 2012: Big

data). Examples include the 13 petabytes of data produced by the four main detectors

at the Large Hadron Collider in 2010 and the 140 terabytes of data the Sloan digital sky

survey (SDSS) has amassed starting from 2000. Other areas where big data is becoming

common include brain datasets using fMRI, MEG or EEG scanners, text documents from

world wide web, and gene datasets in biology applications. For illustration, we show the

growth of internet data in Figure 1.1

1.0.2 Distributed systems

With the increase in sizes of datasets, the computer hardware has also been keeping pace

by following Moore’s law. Moore’s law states that the number of transistors in integrated

circuits doubles approximately every 2 years. However, this does not necessarily translate

www.manaraa.com

Chapter 1. Introduction 5

Figure 1.1: Estimated growth of global data.

to computation performance. In recent years, there has been a trend towards an increase

in the number of computational cores available on a single chip. This necessitates the use

of parallel programming to take advantage of these systems. Also, in order to reduce wall

clock time for processing large datasets there has been an increased need for distributed

systems. MapReduce has been introduced which can rapidly process large amounts of

data in parallel on distributed cluster nodes. One such practical system is the open source

Hadoop library written in Java [112]. To leverage these systems, we need to design ef-

ficient algorithms, with proven convergence guarantees, by leveraging the distributed ar-

chitecture of the computational nodes. Also, the computational nodes can further leverage

parallelization based on their multi-core architecture. One such project based on Hadoop

is the Apache Mahout which attempts to build a scalable machine learning library.

www.manaraa.com

Chapter 1. Introduction 6

1.1 Background

Nonnegative Quadratic programming (NQP) involves optimizing a quadratic objective

function subject to nonnegative constraints. It is defined as follows:

min
x

1

2
x>Ax+ b>x

x ≥ 0 (1.1)

NQP encompasses a wide umbrella of important problems such as LASSO, Support

Vector Machines (SVM), Nonnegative Least Squares(NNLS) and Nonnegative Matrix

Factorization (NMF).

1.1.1 Least Absolute Shrinkage and Selection Operator (LASSO)

Let W ∈ Rm×n be a matrix and y ∈ Rm a column vector. LASSO is formulated as

follows:

min
β

1

2
‖y −Wβ‖22 + λ‖β‖1 (1.2)

The LASSO formulation arises in linear regression with a sparsity regularization term

to avoid the problem of over-fitting. It involves an L1 term which is not differentiable

making the development of efficient algorithms non-trivial. Quite a few algorithms have

been developed over the years to solve this problem [109, 83, 59, 68, 9].

1.1.2 Support Vector Machine (SVM)

Let the set of labeled examples be {(xi, yi)}ni=1, with binary class labels yi = ±1 corre-

sponding to two classes. The dual quadratic optimization problem for SVM [102] is given

by minimizing the following loss function:

min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑
i=1

αi (1.3)

subject to αi ≥ 0, i ∈ {1, . . . , n},

www.manaraa.com

Chapter 1. Introduction 7

where k(xi,xj) is a kernel that computes the inner product Φ(xi)
TΦ(xj) in the space Φ

by performing all operations only in the original data space on xi and xj , thus defining a

Hilbert space Φ.

Recently, the cost of training of kernel SVM’s has shifted the focus of the SVM com-

munity back to linear SVM for large scale applications. This has lead to the formulation

of very efficient linear SVM solvers which converge to a ε precision solution in linear (in

the number of training points) time as seen in the literature [40, 50].

Figure 1.2: Radiation dosage for cancer treatment involves the solution of NNLS prob-
lems. (Left) We plot 12 of 35 slices of a C-shaped tumor. The required dosage to target
the tumor is shown in Red. (Right) The achieved dosage using NNLS is shown.

1.1.3 Nonnegative Least Squares (NNLS)

Let W ∈ Rm×n be a matrix and y ∈ Rm a column vector. The nonnegative least squares

problem (NNLS) is to find a column vector x ∈ Rn which solves the following problem:

min
x≥0

1

2
‖y −Wx‖22 (1.4)

The NNLS problem and an algorithm to solve it was introduced in the early 70’s [62].

NNLS problems frequently arise in practice and there are quite a few algorithms to solve

www.manaraa.com

Chapter 1. Introduction 8

them [62, 57, 11, 6]. Note that the nonnegativity constraint is natural in real problems, for

instance, when we are modeling chemical concentrations, brain activations, or color inten-

sities. Real world applications include target detection at subpixel level in remote sensing

images [18], and resolving tags into genes in the SAGE datasets [118]. We illustrate the

NNLS formulation on a radiation therapy problem in Figure 1.2.

1.1.4 Nonnnegative Matrix Factorization (NMF)

Matrix factorization arises in quite a few applications where the assumption is that the

data is generated from the linear combination of underlying features. Additionally, if we

constrain the data, features and the representation to be nonnegative we arrive at the Non-

negative Matrix Factorization (NMF) problem. NMF has seen increasing applications in

the last decade for nonnegativity is a natural constraint in a wide range of applications like

gene analysis, document clustering and face recognition. We will consider the following

version of the NMF problem, which measures the reconstruction error using the Frobenius

norm [66].

min
W,H

1

2
‖X−WH‖2F

s.t. W ≥ 0,H ≥ 0

‖Wj‖2 = 1, ∀j ∈ {1, · · · , r} (1.5)

where ≥ is element-wise. Note that we use subscript to denote column elements and

superscript to denote row elements.

Besides the Frobenius norm, other measures have been proposed for the NMF prob-

lem [73, 38, 30]. Also, extensions to tensors have been studied in the literature [115, 24].

Convolutive formulations of NMF have been successfully applied to audio datasets [90,

105]. Bayesian treatment of the NMF problem have recently become popular [101, 17].

www.manaraa.com

Chapter 1. Introduction 9

1.2 Contributions of this dissertation

Nonnegative matrix factorization (NMF) and support vector machines have a structural

connection. We explored this connection to propose novel algorithms for both the NMF

and SVM problems. In particular, we developed multiplicative updates for the SVM prob-

lem akin to the NMF problem. Also, we showed an explicit reduction from totally nonneg-

ative least squares to a single class support vector machine. Treatment planning systems

for radiation therapy can be modeled as nonnegative least squares (NNLS) problems. We

exploited the reduction and the existence of fast SVM solvers to efficiently solve the NNLS

problem. This enabled us to reduce the planning time for cancer treatment by an order of

magnitude.

NMF is in general an ill-defined problem and additional constraints such as sparsity

have been shown to result in more domain revelant features [41]. Many sparse formula-

tions for NMF have been proposed. We consider one such model proposed by Hoyer. It has

the benefit that it is easy to use. Hower, algorithms for it are slow. Therefore, we proposed

a novel algorithm based on block coordinate methods. We showed that the algorithm is

fast on real-world datasets and can give us an order of magnitude improvement.

Independent component analysis (ICA) [5, 16, 79, 14] has enjoyed success on a wide

range of domains like speech separation, fMRI brain analysis, and MEG/EEG source ex-

traction. Given signal mixtures, recovering the underlying components is an ill-defined

problem. However, the assumption of independence among the sources turns out to be a

surprisingly powerful and effective for a wide range of problem domains in practice. In

particular, we tackle the question of understanding the relationship between independence

and sparsity in the context of fMRI data. Recent work by Daubechies [28] suggested that

sparsity is the driving force behind the success of ICA algorithms and not independence

as was previously thought. We reexamined the experimental work and concluded that the

evidence does not support the conclusion reached.

www.manaraa.com

10

Chapter 2

Nonnegativity — Structural connections

Let us revisit the three nonnegative problems comprised of support vector machines, non-

negative least squares and nonnegative matrix factorization.

Support Vector Machines (SVM): SVMs are now routinely used for many classifica-

tion problems in machine learning [102] due to their ease of use and ability to generalize.

In the basic case, the input data, corresponding to two groups, is mapped into a higher

dimensional space, where a maximum-margin hyperplane is computed to separate them.

The “kernel trick” is used to ensure that the mapping into higher dimensional space is

never explicitly calculated. This can be formulated as a non-negative quadratic program-

ming (NQP) problem and there are efficient algorithms to solve it [94].

Given labeled training examples {(xi, yi)}ni=1, with binary class labels yi = ±1 corre-

sponding to two classes. The primal formulation of the binary class linear SVM is:

min
w

P (w) :=
1

2
‖w‖22 + C

n∑
i=1

max{0, 1− yi(〈w,xi〉)} (2.1)

where C is a regularization constant. The corresponding dual formulation for linear

SVM [102] is given by minimizing the following loss function:

min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑
i=1

αi (2.2)

subject to 0 ≤ αi ≤ C, i ∈ {1, . . . , n},

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 11

where k(xi,xj) is a kernel that computes the inner product Φ(xi)
TΦ(xj) in the space Φ

by performing all operations only in the original data space on xi and xj , thus defining a

Hilbert space Φ.

An SVM can be trained using variants of the gradient descent method applied to the

NQP. Although these methods can be quite efficient [27], their drawback is that they re-

quire a manually-tuned and problem specific learning rate. Subset selection methods are

an alternative approach to solving the SVM NQP problem [94]. At a high level, they work

by splitting the arguments of the quadratic function at each iteration into two sets: a fixed

set, where the arguments are held constant, and a working set of the variables being op-

timized in the current iteration. These methods, though efficient in space and time, still

require a heuristic to exchange arguments between the working and the fixed sets.

An alternative algorithm for solving the general NQP problem has been applied to

SVMs [104]. The algorithm, called M3, uses multiplicative updates to iteratively con-

verge to the solution. It does not require any heuristics, such as setting the learning rate

or choosing how to split the argument set. Multiplicative updates in the M3 algorithm are

formulated for the general NQP problem and then applied to SVM as a special case. It

was also demonstrated [103] that M3 can solve soft-margin SVMs and the sum constraint

can be accounted for. However, accounting for the sum constraint requires choosing a pa-

rameter, which defeats the original intention of creating a parameter free SVM algorithm.

Nonnegative Matrix Factorization (NMF): We present a brief introduction to NMF

mechanics with the notation that is standard in NMF literature. NMF is a tool to split

a given nonnegative data matrix into a product of two nonnegative matrix factors [67].

The constraint of nonnegativity (all elements are ≥ 0) usually results in a parts-based

representation and is different from other factorization techniques which result in more

holistic representations (e.g. PCA and VQ).

Given a nonnegative m × n matrix X , we want to represent it with a product of two

nonnegative matricesW ,H of sizes m× r and r × n respectively:

X ≈WH . (2.3)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 12

Lee and Seung [67] describe two simple multiplicative updates forW andH which work

well in practice. These correspond to two different cost functions representing the qual-

ity of approximation. Here, we use the Frobenius norm for the cost function. The cost

function and the corresponding multiplicative updates are:

E =
1

2
‖X −WH‖2F (2.4)

W = W � XHT

WHHT
, (2.5)

H = H � W TX

W TWH
, (2.6)

where ‖.‖F denotes the Frobenius norm and the operator � represents element-wise mul-

tiplication. Division is also element-wise. It should be noted that the cost function to be

minimized is convex in eitherW orH but not in both [67]. In [67] it is proved that when

the algorithm iterates using the updates (2.5) and (2.6),W andH monotonically decrease

the cost function.

The slightly mysterious form for the above updates can be understood as described

in [67]. A gradient descent (additive) update forH is given by:

H = H + η � (W TX −W TWH) (2.7)

If the learning rate given by the matrix elements of η be all set to some small positive

number then this is the conventional gradient descent. However, setting the learning rate

matrix as follows:

η =
H

W TWH
(2.8)

gives us the NMF updates. We note the multiplicative factors for the updates correspond to

the negative component of the derivative divided element-wise by the positive component

of the derivative respectively.

NMF problem was extended by Ding et al. [31] to semi-NMF, where data matrix X

and one of the factors W were allowed to have real elements. Ding et al. [31] derive and

provide convergence guarantees for the multiplicative updates:

W = XHT (HHT)−1 (2.9)

H = H �

√
[W TX]+ + [W TW]−H

[W TW]+H + [W TX]−
(2.10)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 13

Nonnegative Least Squares (NNLS): Let W ∈ Rm×n be a matrix and y ∈ Rm a

column vector. The nonnegative least squares problem (NNLS) is to find a column vector

x ∈ Rn which solves the following problem:

min
x≥0

1

2
‖y −Wx‖22 (2.11)

If we additionally constrain all the elements of matrixW and vector x to be nonnegative,

we get the totally nonnegative least squares (TNNLS) problem [81]. TNNLS has been

applied to compressive sensing by OGrady and Rickard [89] who showed that nonnega-

tivity is enough to recover a sufficiently sparse signal. Bruckstein et al. [12] have explored

the connection between uniqueness of nonnegative sparse solutions of underdetermined

systems of equations while Donoho and Tanner [33] explored thresholds for recovery of

sparse solutions via L1 minimization. But why is there this connection between nonnega-

tive entries and sparsity?

Many algorithms have been developed over the years to solve the NNLS problem. A

brief history of these can be found in Kim et al. [57]. For instance, the NNLS algorithm

of Lawson and Hanson [62] was modified by Bro and De Jong [11] and was called FAST-

NNLS (FNNLS). However, FNNLS requires the computation of matrix-matrix product (of

the input matrix) and can be expensive for large-scale problems. This was ameliorated in

the case of multiple right hand sides by Benthem and Keenan [6] and was called FCNNLS.

We do not consider FCNNLS in this work for we are solving NNLS problems with a

single right hand side. Recently, advances in fast randomized projections have lead to

the development of a randomized algorithm for NNLS which involves first employing

a randomized Hadamard transform to construct a smaller NNLS problem. This is then

solved by a standard NNLS solver [8].

Background: In [44], an isomorphism was established between sparse separation and

ε-SVM regression and used it to kernelize sparse separation. Similarly, a connection be-

tween LASSO and SVM’s was established [70] and further exploited for the kernel version

of LASSO. Furthermore, the kernel adatron (KA) algorithm for solving SVM [27] resur-

faced in solving the NNLS problem [39]. Coordinate descent methods have been applied

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 14

to solve the SVM and NMF problems [50, 49]. Recently, an equivalence between L2-SVM

and LASSO has been shown [53]. That is given an L2-SVM problem, we can construct a

LASSO problem with an equivalent solution and vice-versa. Further connections between

the various NQP problems can be found in [53].

Outline: For the Totally Nonnegative Least Squares (TNNLS) problem which is a spe-

cial case of NNLS, we show that it can be reduced to a single-class SVM problem. This

enables us to tie the number of supports (sparsity) of the single-class SVM problem to

the nonnegativity constraint of the NNLS problem [96]. We exploit this reduction to pro-

pose two algorithms based on a primal and a dual SVM solver. Efficiency of the proposed

framework is demonstrated on real-world datasets arising from problems in radiation ther-

apy treatment.

Also, we show a structural connection between NMF and SVM enabling us to propose

multiplicative updates for SVM [97]. In this chapter, we reformulate the dual SVM prob-

lem as a matrix factorization problem and demonstrate a connection to the non-negative

matrix factorization (NMF) algorithm [67]. NMF employs multiplicative updates and is

very successful in practice due to its independence from the learning rate parameter, low

computational complexity, and ease of implementation.

2.1 Our Reduction from TNNLS to SVM

We describe a general framework for reducing TNNLS to SVM. In particular, we show

that the TNNLS problem can be reduced to solving a hard-margin single class dual SVM

problem. Let D denote the diagonal matrix whose diagonal elements are given by the

vector 1
W Tx . Also, let h = Dz. Then,

G(z) =
1

2
‖x−WDz‖22

=
1

2
zT (WD)T (WD)z − xTWDz +

1

2
xTx

=
1

2
zT (WD)T (WD)z − 1Tz +

1

2
xTx

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 15

Ignoring the 1
2
xTx, which does not change the location of the minimum, we see that it is

an instance of the SVM objective in equation 2.2, with v corresponding to z and si cor-

responding toWiDii. We have a single class maximum margin classifier passing through

origin where the datapoints given by {WiDii}ni lie in the positive orthant. Since, the pri-

mal version of TNNLS corresponds to the dual of a single class SVM, the dual of TNNLS

corresponds to the primal of the single class SVM. Geometrically, this corresponds to find-

ing a maximum margin hyperplane which gives us the set of supports. Or in other words,

it gives us the zero elements of the vector z or equivalently h. In practice, we find a su-

perset of supports because we use a SVM solver to find an approximate maximum margin

hyperplane.

2.1.1 Implementation issues

Algorithms for solving the SVM problem can be split into primal or dual depending on the

version of the problem they solve. In this paper, we use a primal SVM solver to find an

approximate maximum-margin hyperplane. This gives us a subset of nonsupport vectors.

We solve for the remaining entries by invoking an exact NNLS solver. Note that, if we had

a dual SVM solver, we could directly use it to solve the TNNLS problem. However, since

we are using solvers whose performance scales as O(log(1/ε)), it might be preferable to

get an approximate solution for say ε = 0.001 and get the exact solution by using some

other exact solver. This depends on how much we care about the accuracy of the solution

and is application dependent.

Recently, a lot of fast approximate solvers have been proposed to solve the linear SVM

problem. OCAS by [40] is based on a cutting plane algorithm and is one of the state-of-the

art solvers. It very quickly approximates a maximum-margin hyperplane and its running

time is linear in the size of the input samples (see [40] or [50] for details). For getting an

approximate maximum-margin hyperplane, we use the OCAS solver of [40]. However,

since we are using an approximate SVM solver, we find a subset of the zeros and have to

solve for the smaller problem by using an exact NNLS solver.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 16

x

y

x

y

Figure 2.1: We illustrate two cases where SVM gives us no speed up(left) and the other
case where it does(right). The approximate hyperplane which is output by the SVM solver
is shown in blue and the threshold hyperplane whether we accept a point as a non-support
is given by the line in green. Parameters C, ε have to be fed in to the SVM solver. A
priori, we have to trade-off high values of C and low values of ε with computation time.
The best values of these parameters with respect to computation time and correctness
of solution depend on the distribution of the data. This is illustrated in the figure. We
plot two dimensional points on a plane in each figure. If the data is too clustered along
the maximum-margin hyperplane(left) and the values of C, ε and δ are not set properly,
we might end up declaring that all points are potentially supports after running the SVM
solver. A better distribution of data would result in the case(right) where we prune the
number of potential supports thereby reducing the size of the original problem.

2.2 Primal SVM solver

If we use a primal hard-margin SVM solver and find an approximate hyperplane, say w

then w satisfies the condition: 1 − P (w∗)/P (w) ≤ ε where w∗ denotes the optimal

hyperplane and ε is tolerance to which we solve the problem. The way we set a coefficient

to zero is if it’s corresponding input si satisfies the condition 〈w∗, si〉 > 1. Since we

don’t have the vector w∗ and have access to only w, ε, we instead use the following test

function: 〈w, si〉 > 1 + δ where δ is a function of ε and the data. By using the primal

SVM solver, we are in fact solving the dual version of the TNNLS problem. Informally,

this corresponds to finding the zeros of the solution vector. Once, we have all the zeros

of the solution vector, the rest can be found by any least squares solver. However, if we

end up with a subset of the zeros, as we do in this paper, we need to solve for the rest of

the solution vector by using an NNLS solver. In practice, we find that ε set in the range

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 17

[10−4, 10−6] is a good compromise between speed and accuracy as seen in the experiment

section 2.3. We don’t actually give a formula for computing δ but found 10ε to be a good

heuristic in practice.

In this paper, we use a soft-margin SVM solver. This results in the issue of selecting

the soft-margin parameter C. If we had used a hard margin SVM solver, this would not an

issue as C = ∞. However, in the case of soft-margin SVM we need to set it. Ideally, we

want C to be as large as possible. We found that C in the range [10, 100] is a good choice

for a wide range of problem sizes as shown in experiment section 2.3.

We illustrate the issue of setting the parameters ofC, ε and δ in Figure 2.1. If the data is

not close to the maximum separating hyperplane then we need not solve the SVM to high

accuracy and can get by with a rough solution. However, if the data is highly clustered as

in the case of Figure 2.1 then, we need to set ε high and this requires higher computation

time for the SVM solver. It might be that the reduction can take more time than if we

solved it directly. At the moment, we don’t have a nice way to resolve this question.

If we don’t treat the SVM solver as a black box as we do now, we can do something

smarter by checking ”progress” at each iteration and can come up with heuristics as to

when to switch to exact solver.

2.2.1 Bounds

The soft margin parameter C can be set in a precise manner if we solve the primal SVM

problem exactly. Notice that the soft-margin SVM formulation (2.1) has a dual formu-

lation (2.21) where the parameter C only appears as an upper-bound constraint. Let

L = max(W Tx
diag(W TW)

) where the function diag outputs the diagonal of a given input ma-

trix. Setting C to be any value greater than L would make the single-class soft-margin

SVM problem with nonnegative inputs equivalent to its hard-margin formulation. How-

ever, since we solve the soft-margin to only ε precision, it becomes tricky as to what the

optimal value for parameter C should be.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 18

We have the following bound on the primal solver objective:

(1− ε)P (w) ≤ P (w∗) ≤ P (w)

We can find a nonnegative vector f from the above inequality such that if 〈w − f , si〉 >

1 implies that 〈w∗, si〉 > 1 for all inputs si. In practice, we found this approach for

estimating the supports conservative.

2.3 Experiments

In this section, we are going to present the results of applying various NNLS algorithms

to different datasets. For the PQN-NNLS solver, we use the code supplied by the au-

thors [57]. The default settings for the solver were used. The randomized NNLS solver

code is based on the algorithms in [4] and [57].

We ran all the experiments on a machine with 2.2Ghz cpu power and 32GB of physical

memory with 8 cores. The number of threads was set to 1 to ensure that we are using a

single core.

Besides random data sets, we also applied our TNNLS solver to data sets that arise

from Gamma Knife radiosurgery [21] and particle radiation therapy [61].

Gamma knife radiosurgergy has been a well-known treatment modality for many brain

tumors and functional disorders. It uese γ-rays emitted from radioactive 60Co sources to

eradicate tumors and eliminate them. These sources are placed in a hemispherical, circular

or linear array and their γ-ray beams are focused on a single point, creating a spherical

high dose volume. Generally speaking, the goal of Gamma Knife is to use these spherical

high dose volume to create a radiation dose distribution where the high dose regions are

conformed to the targeted tumors. The problem is a typical TNNLS problem, where each

column of the matrix W is a spherical high dose volume, and vector x is the ideal dose

distribution, and the vector h is the weighting (i.e., “beam-on” time) of each high dose

volume. Natually, everything is nonnegative in the problem. Our experimental results on

Gamma Knife radiosurgery are in Section 2.3.2.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 19

Another type of medical problem that we experimented with is the particle radiation

therapy, where charged particles such as protons and carbon ions are used to irradiate

tumors. This problem is similar to Gamma Knife radiosurgery, because the goal is to use

particles beams to cover a targeted tumor to achieve an ideal dose distribution. Figure 2.2

shows the profiles of proton and carbon ions in comparison to X-rays. As can be seen,

the dose profiles of protons and carbon ions display a distinct localized peak, called a

Bragg Peak. The Bragg Peak makes TNNLS modeling particularly suitable for planning

particle therapy, where the goal is to find the weighting for each particle beam to created

a distribution as close to the target distribution as possible. Our experimental results on

carbon therapy are shown in Section 2.3.3.

Figure 2.2: Dose profiles of proton and antiproton beams

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 20

2.3.1 Random problems

We evaluate the performance of the algorithm on randomly generated problems by varying

size, aspect ratio and sparsity of the input data.

Size

We have applied the algorithm to a suite of 200 randomly generated problems of varying

size. This is done by sampling the entries of W ,x uniformly from [0, 1]. We set the size

of the matrix W to be 300i × 200i, where i ranges from 1 to 40. And, for each size, we

create 5 randomly generated problems.

First, we applied the NNLS algorithms FNNLS [11], RAND-PQN-NNLS [8] and

PQN-NNLS [57] to solve this set of problems. The running times for these algorithms

are shown in Figure 2.3 with solid markers.

Next, we applied our reduction to obtain the SVM problem, and used the OCAS algo-

rithm to find most of the zeros of the solution vector, and finally solved for the nonzeros by

giving it to each of the 3 NNLS solvers mentioned above. The objective value obtained for

the exact solver and the corresponding OCAS initialized solver match up to 6 significant

digits. The parameters in OCAS initialized solvers are set as (C, ε) = (10, 10−4) for all

problems. We plot the running time for the 3 OCAS initialized algorithms in Figure 2.3

using hollow markers. For each size, we plot the mean of running times. Note that these

running times are for the entire procedure of reduction, running the SVM solver, and exact

solution of the smaller NNLS problem. Except for the smallest cases, the OCAS initial-

ized solver beats the corresponding exact solver. For larger matrices, the figure shows at

least an order of magnitude improvement in the running times.

Aspect ratio

We did a similar analysis on a suite of 30 randomly generated problems of varying aspect

ratio. The number of rows is set to 12000 and the number of columns is 1200× i where i

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 21

goes from 1 to 6. For each i, we generate 5 random instances. The parameters in OCAS

initialized solvers are set as (C, ε) = (10, 10−4). The running times for all the six solvers

are shown in Figure 2.3.

Sparsity

We also compared the running times for two of the solvers by varying the sparsity of the

input matrix W . We choose a fixed sized problem of size 1200 × 800 and varied the

sparsity from 0.1 to 1.0 in increments of 0.1. Note that 1.0 corresponds to all the elements

being nonzero. The parameters in OCAS initialized solvers are set as (C, ε) = (100, 10−6).

The plots of running times for the two solvers FNNLS and PQN-NNLS and their OCAS

initialized solvers are shown in Figure 2.3.1.

Figure 2.3: We plot the running time for all 6 approaches. Lines with filled markers
correspond to NNLS solvers and hollow markers correspond to NNLS solvers initialized
by the OCAS solver and our reduction technique. The x-axis is indexed by i, which
controls the size of the input matrix, which is 300i× 200i.

2.3.2 Phantom tumor dataset

We also applied our TNNLS solver to a data set from a phantom commonly used for

benchmarking radiosurgery treatment planning systems [76]. The phantom contains a C-

shaped tumor surrounding a spherical critical structure and simulates a spine tumor case.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 22

0.2 0.4 0.6 0.8 1.0
Density

10-1

100

101

tim
e

(s
ec

on
ds

)

PQN-NNLS
fNNLS
OCAS-PQN-NNLS
OCAS-fNNLS

Figure 2.4: We plot running times for FNNLS and PQN-NNLS and their corresponding
OCAS initialized solvers. The problem size is fixed at 1200× 800 and we vary the density
from 0.1 to 1.0. These are the mean times for 10 runs at each density level.

In this data set, the size of the input matrix W is 42875 × 20268 and the input vector x

is of size 42875. Clinically, each column of the matrix W represents the radiation energy

distribution deposited by a “shot” of radiation in Gamma Knife radiosurgery. The matrix

x represents the ideal radiation energy deposition as prescribed by the physician. The

sought variable h denotes the beam-on time each shot (i.e., a column of W) to create

a radiation dose distribution that is as close to the ideal as possible. All solvers have the

same objective value up to 6 significant digits. The parameters in OCAS initialized solvers

are set as (C, ε) = (10, 10−4). The running times are shown in Figure 2.5.

2.3.3 Real tumor datasets

Besides randomly generated data, we also applied our TNNLS solver to two real radiation

therapy data sets, both obtained from the German Cancer Research Center (DKFZ), of

Heidelberg, Germany. The first of these is a skull base tumor case that was treated with

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 23

Dataset FNNLS PQN-
NNLS

OCAS-
FNNLS

OCAS-
PQN-
NNLS

Scaling
factor

Phantom
tumor

18.69 78.66 1.0 5.48 186s

Skull-
base
tumor

2.21 43.16 1.0 9.01 906s

Prostate
tumor

1.46 2.04 1.0 1.35 134s

Figure 2.5: Running times on the different datasets using the solvers FNNLS, PQN-NNLS
and RAND-PQN-NNLS and their corresponding OCAS initialized counterparts can be
obtained by multiplying the corresponding entry with the scaling factor. Comparison be-
tween running times across different NNLS solvers should be taken with a grain of salt for
the stopping criterion for each solver is potentially different. However, stopping criterion
between a solver and its OCAS initialized solver are the same and thus can be compared.

carbon ion therapy. In this data set, the size of input matrix W is 227920 × 6505 and

the input vector x is 227920. Just like the dataset in Section 2.3.2, the columns of W

represent the radiation energy distribution of an ion beam, while the vector x represents

the prescription. The goal of the optimization is to calculate the beam-on time for each

individual beam. Note that the default setting of the soft margin to 10 didn’t converge

to the exact solution, so we used 100 for this dataset. The objective values match upto 6

significant digits as before. The parameters in OCAS initialized solvers are set as (C, ε) =

(100, 10−4). The running times are shown in Table 2.5.

The second real data set is a prostate carcinoma case that was treated using two oppos-

ing beams. In this data set, the input matrix is 8284× 7388. The parameters in the OCAS

initialized solvers are set as (C, ε) = (100, 10−5).

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 24

2.3.4 Discussion

The speed up in the case of Real Tumor dataset is only around 2 times compared to the

magnitude improvement we get in the case of Random and Phantom tumor datasets for

the FNNLS solver. This is to be expected because the input matrix is “tall” and our algo-

rithm does better when we are dealing with “fat” matrices. We have used the exact solver

from [57] in combination with the randomized algorithm of [8]. Other exact solvers can

also be used.

Note, the speedup is not uniform across the various problems. As, we noted in section

“approximate solvers”, this depends on the spread of the data. If the datapoints are not

clustered along the maximum margin hyperplane, we can solve it pretty quickly using the

approximate SVM solver. However, for cases, where this is not true, the running time for

our solver is increased.

In the case where the matrix W is sparse, we found that a more aggressive setting for

the parameters C, ε was required.

2.4 Dual SVM solver

We propose a coordinate descent scheme to solve NNLS. Our method is similar to the

successful approach by Hsieh et al. [50] for solving linear SVM, which has been recently

generalized to Nonnegative Quadratic Programming (NQP) by Nesterov [87]. Earlier,

Franc, Hlavac and Navara [39] proposed a coordinate descent algorithm for NNLS; how-

ever, their approach of applying coordinate descent for solving NNLS is not optimized for

large datasets. In particular, they compute W>W which can be expensive. Experiments

indicate that we converge quickly to a usable solution.

We optimize one coordinate at a time similar to the previous coordinate descent ap-

proach [39]. However, our method avoids the expensive computation of the matrix prod-

uct W>W. (Since we are updating only one coordinate at a time, computing the full

gradient information is unnecessary.) The plain version of our Frugal Coordinate Descent

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 25

algorithm (FCD) is presented in Algorithm 1.

Algorithm 1 FCD(x,W,h)

(If h is not specified, let h = 0.)

Let z =
∑

iWihi.

repeat

for i = 1, . . . , n do

G = 〈Wi,x− z〉

if hi = 0 then

G← min(G, 0)

end if

if G 6= 0 then

z ← z + (max(hi − G
‖Wi‖2 , 0)− hi)Wi

hi ← max(hi − G
‖Wi‖2 , 0)

end if

end for

until convergence

Output: Vector h.

The convergence condition of the algorithm can be specified in a couple of different

ways. One of them is to specify the stopping threshold of relative change in the norm of

the current solution or objective value across outer iterations of the algorithm. Another is

to explicitly set the number of outer loops or total computation time. Finally, one could

use an approximate satisfiability of KKT conditions of the NNLS problem depending on

the required precision of the solution. The proof of convergence and its rate have been

previously discussed [87].

There are two important cases for NNLS corresponding to “tall and thin” (m � n)

and “short and fat” (m� n). Some of the algorithms compute the matrix product W>W

(O(mn2)) while others work with W directly. Our algorithm is especially suitable when

the matrix W is not thin.

We suggest three modifications that could potentially further speed up our algorithm.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 26

They are random permutations [87], shrinking [54], and random projections [8].

2.5 Experiments

In this section, we compare our algorithm with two NNLS solvers called PLB [57] and

FNNLS [11]. First, we applied our algorithm FCD and the competing solvers on various

synthetic datasets ranging in size from 300 × 200 to 9000 × 6000. Next, we consider

a large dataset obtained from a phantom commonly used for benchmarking radiosurgery

treatment planning systems by Luan et al. [76]. The size of the input matrix W is 42875×

20268. Also, we consider a skull base tumor case that was treated with carbon ion therapy

which was obtained from the German Cancer Research Center (DKFZ), of Heidelberg,

Germany. The size of the input matrixW is 227920×6505. Clinically, each column of the

matrix W represents the radiation energy distribution deposited by a “shot” of radiation in

Gamma Knife radiosurgery. The matrix x represents the ideal radiation energy deposition

as prescribed by the physician. The sought variable h denotes the beam-on time need for

each shot (i.e., a column of W) to create a radiation dose distribution that is as close to the

ideal as possible. The results of running times for the synthetic and the phantom datasets

are shown in Figure 2.6. Similarly, the running times versus objective values for the real

tumor dataset is shown in Figure 2.7.

Our algorithm was implemented in MATLAB (http://www.mathworks.com)

similar to the PLB algorithm. We used the default settings for the competing algorithm as

given by the implementation. All of our experiments were run on a 3.2 Ghz Intel machine

with 24GB of RAM and the number of threads set to one.

We note that our algorithm converges rapidly to within 1% of final value very fast.

This accuracy is good enough in practice for radiation dosage calculations.

http://www.mathworks.com

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 27

Synthetic datasets Phantom tumor dataset

Figure 2.6: (Left) Mean running times for each problem size where the elements of the
matrixW and vector x are drawn uniformly at random from [0, 1]. The running times for
the solvers should be taken with a grain of salt because of the different stopping criterion
used. (Right) Running times versus objective values for our (FCD) algorithm and the
competing FNNLS and PLB algorithms on the phantom tumor dataset.

2.6 Connections between NMF and SVM

In this section, we will formalize some insights in to the similarities between the NMF and

SVM problems. In particular, we will first show how to view SVM as a matrix factoriza-

tion. Secondly, we will show how the steps in the popular alternate updates scheme for

NMF can be reduced to single class SVM problems.

2.6.1 SVM as matrix factorization

Let the set of labeled examples be {(xi, yi)}Ni=1, with binary class labels yi = ±1 corre-

sponding to two classes, denoted by A and B respectively. Let the mapping Φ(xi) be the

representation of the input datapoint xi in space Φ, where we denote the space by the name

of the mapping function performing the transformation. We now consider the problem of

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 28

200 400 600 800

103

Time (seconds)

O
bj

ec
tiv

e
va

lu
e

Real tumor dataset

PLB
FCD

Figure 2.7: Running times versus objective values for FCD and PLB are shown for the
real tumor dataset .

computing the maximum margin hyperplane for SVM in the case where the classes are

linearly separable and the hyperplane passes through origin (We will relax this constraint

presently.).

The dual quadratic optimization problem for hard-margin SVM [102] is given by min-

imizing the following loss function:

S(α) =
1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑
i=1

αi (2.12)

subject to αi ≥ 0, i ∈ {1, . . . , n},

where k(xi,xj) is a kernel that computes the inner product Φ(xi)
TΦ(xj) in the space Φ

by performing all operations only in the original data space on xi and xj , thus defining a

Hilbert space Φ.

The first sum can be split into three terms: two terms contain kernels of elements that

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 29

belong to the same respective class (one term per class), and the third contains only the

kernel between elements of the two classes. This rearrangement of terms allows us to drop

class labels yi, yj from the objective function. Denoting k(xi,xj) with kij and defining

ρij = αiαjkij for conciseness, we have:

min
α

1

2

∑
ij∈A

ρij − 2
∑
i∈B
j∈A

ρij +
∑
ij∈B

ρij

− n∑
i=1

αi (2.13)

subject to αi ≥ 0, i ∈ {1..n}.

Noticing the square and the fact that kij = Φ(xi)
TΦ(xj) we rewrite the problem as:

min
α

1

2
‖Φ(XA)αA − Φ(XB)αB‖22 −

∑
i∈{A,B}

αi (2.14)

subject to αi ≥ 0,

where the matrices XA,XB contain the datapoints corresponding to groups A and B

respectively with the stacking being column-wise. The map Φ applied to a matrix cor-

responds to mapping each individual column vector of the matrix using Φ and stacking

them to generate the new matrix. The vectors αA and αB contain coefficients of the sup-

port vectors of the two groups A and B respectively. We will use the vector α to denote

the concatenation of vectors αA,αB. Expression (2.14) is a form of matrix factorization

problem and resembles NMF with an additional term in the objective [67]. The above

formulation enables other metrics D(Φ(XA)αA||Φ(XB)αB) than least squares for SVM

such as more general Bregman divergence [29]. However, to be computationally efficient

the metric used has to admit the use of the kernel trick. The matricesXA,XB contain the

datapoints corresponding to groups A and B respectively with the stacking being column-

wise. The map Φ applied to a matrix corresponds to mapping each individual column

vector of the matrix using Φ and stacking them to generate the new matrix. The vectors

αA and αB contain the dual variables of the two groups A and B respectively. We will

use the vector α to denote the concatenation of vectors αA,αB. Expression (2.14) is a

form of matrix factorization problem and resembles NMF with an additional term in the

objective [67]. The above formulation enables other metrics D(Φ(XA)αA||Φ(XB)αB)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 30

than least squares for SVM such as more general Bregman divergence [29]. However, to

be computationally efficient the metric used has to admit the use of the kernel trick.

2.6.2 NMF reduced to sequence of SVMs

We prove that NMF can be reduced to solving a sequence of hard-margin single class

SVM problems. We are now in a position to sketch the reduction. The vectors x and h are

the corresponding column vectors of the matrices X and H . Let D denote the diagonal

matrix whose diagonal is given by the vector 1
W Tx . Also, let h = Dz. Then,

G(z) =
1

2
‖x−WDz‖22

=
1

2
zT (WD)T (WD)z − xTWDz +

1

2
xTx

=
1

2
zT (WD)T (WD)z − 1Tz +

1

2
xTx

Ignoring the 1
2
xTx, which does not change the location of the minimum, we see that it

is an instance of the SVM objective in equation 2.13, with α corresponding to z and si

corresponding toWiDii with the kernel function being linear. We have a single class max-

imum margin classifier passing through origin where the datapoints given by {WiDii}ni lie

in the positive orthant. The NMF problem can be written as a sequence of sub-problems

as follows:

min
H

1

2
‖vec(X)− (I ⊗W)vec(H)‖2F

s.t.H ≥ 0

min
W

1

2
‖vec(XT)− (I ⊗H)vec(W T)‖2F

s.t.W ≥ 0

2.6.3 Our algorithms — Sign-insensitive Kernel SVMs

In this section, we derive two new updates for solving SVM’s with sign-insensitive kernels

based on NMF. A sign-insensitive kernel is one whose output can be either positive, nega-

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 31

tive or zero. One of them follows immediately by appealing to the semi-NMF formulation.

The other is derived using the idea from NMF updates of Lee and Seung [67].

semi-NMF SVM

We differentiate the objective (2.14) with respect to αA:

∂S

∂αA
= Φ(XA)TΦ(XA)αA − (Φ(XA)TΦ(XB)αB + 1)

= K(XA,XA)αA − (K(XA,XB)αB + 1) (2.15)

We slightly abuse notation to define kernel for matrices as follows: K(C,D) is given

by the matrix whose (i, j)th element is given by the inner product of ith and jth datapoints

of matrices C,D respectively in the feature space Φ for all values of (i, j) in range. We

note that the derivative has a positive and a negative component. We use the following

notation to represent kernel matrices:

K(XA,XB) = KAB

K(XA,XA) = KA

and their decomposition intoK+ andK−:

K+
ij =

Kij Kij > 0,

0 otherwise,
K−ij =

|Kij| Kij < 0,

0 otherwise.

Similarly, we take the derivative with respect to αB. Recalling the updates for semi-

NMF (Equation (2.9)), we write down the multiplicative updates for problem (2.14):

αA = αA �

√
K+

ABαB +K−AαA + 1

K+
AαA +K−ABαB

αB = αB �

√
K+

BAαA +K−BαB + 1

K+
BαB +K−BAαA

(2.16)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 32

where 1 is an appropriately sized vector of ones and � denotes the Hadamard product as

before. The proof of the updates directly follows from the proof of semiNMF updates [31,

84].

MUSIK

If instead of using semi-NMF formulation, we use NMF to derive the updates, i.e. updating

by the ratio of the negative to the positive part of the gradient, we get the following:

αA = αA �
K+

ABαB +K−AαA + 1

KAαA +K−ABαB

αB = αB �
K+

BAαA +K−BαB + 1

K+
BαB +K−BAαA

(2.17)

In these updates, we note that the split is not done as in the previous section. Instead

the kernel matrix is split as follows:

K+
ij =


Kij Kij > 0,

Kij +Dii i = j,

0 otherwise,

K−ij =


|Kij| Kij < 0,

|Kij|+Dii i = j,

0 otherwise.

In other words the new split when defined in terms of the old split looks like:

K+
new = K+ +D

K−new = K− +D

K = K+
new −K

−
new

= K+ −K−

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 33

where matrix D is a nonnegative diagonal matrix. We note that in practice, we explicitly

work with the matrices in the old split even though we are using the new split. This is

compensated for in the new updates. The construction of matrixD is as follows:

[DA]ii = max(0,
∑
j 6=i

[
K−A

]
ij
−
[
K−ABαB

αA

]
i
). (2.18)

[DB]ii = max(0,
∑
j 6=i

[
K−B

]
ij
−
[
K−BAαA

αB

]
i
). (2.19)

This ensures that K−new becomes positive semi-definite. At each new iteration of the

updates, we chooseD adaptively using eq 2.18 and the new updates are given by:

αA = αA �
K+

ABαB +K−AαA + 1 +DAαA
KAαA +K−ABαB +DAαA

αB = αB �
K+

BAαA +K−BαB + 1 +DBαB
K+

BαB +K−BAαA +DBαB
(2.20)

This condition is required for convergence properties of the updates. We defer the

proof to the appendix. We note that in the case of nonnegative kernels i.e. kernels which

output a nonnegative value for all valid inputs, the split can be done trivially by having

K− set to zero andK+ set to the original kernel matrix.

We call this new algorithm Multiplicative Updates for sign-insensitive Kernel SVM

(MUSIK). We note that besides solving SVM problem, this formulation presents multi-

plicative updates for semi-NMF alternative to Ding et al. [31]. Further, it positions us to

extend to the general, soft-margin, biased SVM (Sections 2.6.6 and 2.6.7).

2.6.4 Nonnegative Quadratic Programming

It is well known that the dual formulation (2.13) can be represented as a quadratic pro-

gramming problem with a nonnegativity constraint on alphas [102]:

F (α) =
1

2
αTAα− 1Tα, (2.21)

whereA is the Gram matrix of data points whose values are scaled by corresponding label

products (Aij = yiyjK(xi,xj)) and 1 denotes an appropriately sized vector of ones. A

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 34

more general form of quadratic programming can be written as:

F (α) =
1

2
αTAα+ bTα. (2.22)

This problem is called Nonnegative Quadratic Programming (NQP) when the nonnegativ-

ity constraint is enforced on α. SVM is a special case of NQP.

Parameter free multiplicative updates for NQP have been previously introduced [104].

For the special case of SVM the updates from [104] have the following form:

α = α�
1 +

√
1 + 4(A+α)� (A−α)

2(A+α)
, (2.23)

whereA+ andA− are defined as:

A+
ij =

Aij Aij > 0,

0 otherwise,
(2.24)

A−ij =

|Aij| Aij < 0,

0 otherwise.
(2.25)

Reformulated SVMs for which we have derived multiplicative updates in Section 2.6.3,

can be represented as NQP with a special form ofA and α:

α̃ =
[
αA αB

]T
(2.26)

Ã =

 K(XA,XA) −K(XA,XB)

−K(XB,XA) K(XB,XB)

 (2.27)

The block structure of Ã allows for a clear and easy split of this matrix into Ã+ and

Ã− after which it is clear that the multiplicative update of NQP (2.23) is different from

the updates in (2.17).

In order to highlight that difference we generated a random matrix A of form (2.27)

for dimension 2 and solved the problem using the method introduced in Section 2.6.3 and

the update (2.23), introduced in [104]. Convergence paths for both algorithms are shown

in Figure 2.8. The figure shows a paraboloid of the two dimensional objective function

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 35

generated by a random construction of the Gram matrix satisfying the structure in (2.27).

MUSIK and M3 algorithms [104] were applied to this problem starting at α = [1, 1]T . As

expected, both algorithms arrive at the unique solution of the convex problem, however

they follow different paths and MUSIK takes fewer steps.

Figure 2.8: The figure shows a paraboloid of the two dimensional objective function gen-
erated by a random construction of the Gram matrix satisfying the structure in (2.27).
MUSIK and M3 algorithms [104] were applied to this problem starting at α = [1, 1]T . As
expected, both algorithms arrive at the unique solution of the convex problem, however
they follow different routes and the nonnegative kernel SVM takes fewer steps.

Figure 2.8 demonstrates the differences between the methods on a single problem case.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 36

In order to have an aggregate measure of the difference we have implemented the follow-

ing simulation. We have randomly constructed 100 positive definite matrices Ã with the

structure required by our algorithm (2.27) (recall that the structure comes from the require-

ment of the kernel to be nonnegative) for each dimension from the following list: (16, 32,

64, 128, 256, 512, 1024, 2048). Equal number of data points of each class was assumed.

For each of these matrices we have solved the QP problem (2.21) using quadprog func-

tion of Matlab. All 800 problems were constructed to be well conditioned and solvable

by this function. Knowing the exact solution to a given problem we ran both MUSIK and

M3 until they were within the given percent of the solution (convergence tolerances of

1%, 0.1% and 0.01% were used). Although the absolute value of this percent depends on

the distance of the optimum from the base hyperplane it is not an issue in our case due

to the shift b being equal to 1 for all the problems. For each problem we have computed

the ratio of the number of iterations it took the M3 algorithm to reach within the given

percent of the solution to the number of iterations it took MUSIK to finish. Results of this

simulation are displayed in Figure 2.9.

2.6.5 Decomposition

As we show in the previous section MUSIK updates converge faster than M3. In part

this is due to the better asymptotic bound on the convergence rate which we discuss in

Section 2.6.9. However, the next feature that improves the convergence rate is splitting

α into parts. Separately updating two groups of alphas is similar to decomposition tech-

niques [91], only the way we set the problem does not require any additional heuristics.

In order to demonstrate that decomposition affects the performance in our multiplica-

tive updates, we compare it with MUSIK algorithm in which elements of α are updated

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 37

Figure 2.9: The figure shows the average ratio of the number of iterations for M3 to the
number of iterations for MUSIK taken to achieve given tolerance on the same problem
(up is good). Computation is done at error bar points, the lines connecting them are for
the visual guide only. The larger the problem size the smaller the number of iterations the
algorithm needs compared to M3, which can be up to 4 times less. Since the running time
per iteration is comparable for both algorithms 4 times improvement in iterations means
4 times faster. Even for 0.01% distance from the solution our algorithm is more than two
times faster on reasonable sized problems.

simultaneously:

αA
αB

 =

αA
αB

�
K−A K+

AB

K+
BA K−B

αA
αB

+ 1

K+
A K−AB

K−BA K+
B

αA
αB

 (2.28)

We call this modification of the algorithm integrative MUSIK (iMUSIK).

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 38

Figure 2.10 shows objective function, training error and testing error as a function of

iteration number for MUSIK, iMUSIK and M3 algorithms. Asymptotically the fastest con-

vergence is exhibited by the MUSIK algorithm and the iMUSIK algorithm fall between

MUSIK and M3. The difference between iMUSIK and MUSIK is only due to the decom-

position. Decomposition improves the convergence rate as improved updated parameters

are used when updating the remaining parameters.

Figure 2.10: Differences in convergence on the UCI breast cancer dataset for MUSIK, M3

and integrated MUSIK (iMUSIK) algorithms.

If we start making the size of the subsets updated at once smaller, we arrive at chunking

algorithms of which SMO [94] represents the extreme case. In the extreme case we can

update only a single element of α per iteration. In this case we end up with multiplicative

variant of the Kernel Adatron (KA) algorithm [27].

KA is a simple gradient ascent procedure for learning support vectors with adaptive

learning rate. It has a learning rate parameter which needs to be set. The updates for

kernel adatron are as follow:

αi = αi + ηi(1− yi(
∑
j

K(xi, xj)yjαj)) (2.29)

where ηi is the learning rate parameter. In the case of support vector machines it is set as

ηi = 1
K(xi,xi)

. If we instead set the learning rate to be

ηi =
αi
Ciα

(2.30)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 39

we obtain a multiplicative algorithm for KA through MUSIK updates. Note that the matrix

C corresponds to the matrix in the denominator of the updates in equation (2.28) and we

subscript it to denote the corresponding row vector. We get the multiplicative updates of

MUSIK done sequentially. Kernel adatron (KA) belongs to the class of subset methods

and can be shown equivalent to the popular SMO algorithm [55].

When heuristics are used to choose which αi to update KA demonstrates very fast

convergence. Thus it is expected that multiplicative KA with heuristics is considerably

faster than MUSIK. However, the attractive feature of M3 and MUSIK is the absence of

hyper-parameters, a feature that is removed by the need to use heuristics in multiplicative

KA algorithm.

Also, the KA algorithm can be adapted to solve the NMF problem. This was in-

deed done by applying sequential updates to solve nonnegative least squares problem

(NNLS) [39]. This was subsequently adapted for solving NMF [117].

2.6.6 Soft Margin SVM

We can extend the multiplicative updates to incorporate upper bound constraints of the

form αi ≤ l where l is a constant as follows:

αi = min {αi, l} (2.31)

These are referred to as box constraints, since they bound αi from both above and

below.

The dual problem for soft margin SVM is given by:

min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑
i=1

αi (2.32)

subject to 0 ≤ αi ≤ l, i ∈ {1..n}.

The parameter l is a regularization term, which provides a way to avoid overfitting. We

note that this objective differs from hard margin SVM (2.13) only in box constraints. Soft

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 40

margin SVM involves box constraints and that can be handled by the above formulation.

At each update of α, we implement a step given by (2.31) to ensure the box constraint is

satisfied.

2.6.7 Bias

SVM with a bias term is given by the following formulation:

S(α) =
1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑
i=1

αi (2.33)

subject to αi ≥ 0,
∑
i

yiαi = 0, i ∈ {1, . . . , n}.

We can incorporate bias into MUSIK by considering the following modifications as

shown in Keerthi et al. [56]. We introduce a weight variable λ and rewrite the equality

constraint
∑

i yiαi = 0 as the following two equality constraints :

∑
i∈A

αi = λ,
∑
j∈B

αj = λ

Let us introduce new variables βk = αk/λ for all k and we obtain the following new

objective :

S1(β, λ) =
λ2

2

n∑
i,j=1

βiβjyiyjk(xi,xj)− 2λ (2.34)

s.t. βi ≥ 0,
∑
i∈A

βi = 1,
∑
i∈B

βi = 1.

First, we optimize λ keeping the vector β fixed and then alternate by optimizing β

keeping λ fixed. Optimizing with respect to λ gives :

λ =
2∑

i

∑
j βiβjyiyjk(xi,xj)

(2.35)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 41

We substitue this value of λ in the above formulation to get the new objective :

S2(β) =
1

2

n∑
i,j=1

βiβjyiyjk(xi,xj) (2.36)

s.t. βi ≥ 0,
∑
i∈A

βi = 1,
∑
i∈B

βi = 1.

We update the β vector corresponding to each group alternatingly and derive the following

updates similar to Eggert and Körner [37]:

βA = βA �
KABβB + 1βTAKAβA
KAβA + 1βTAKABβB

βB = βB �
KBAβA + 1βTBKBβB
KBβB + 1βTBKBAβA

(2.37)

when there is normalization involved. The updates are not guaranteed to be non-increasing

but in practice converge to global optimum – an observation similar to [37]. The updates

assume that the kernels are nonnegative. A nonnegative kernel is one whose output is

always nonnegative irrespective of its input. Similar to MUSIK algorithm, the updates can

be extended to general kernels.

2.6.8 Fixed points

We show that the updates have fixed points wherever the objective function S(α) achieves

its minimum value. Let α∗ be the global minimum. Let us consider the coefficients

corresponding to group A. At such a point, we either have that each αiA is greater than

zero and derivative of objective with respect to αiA vanishes or it is zero and derivative is

greater than or equal to zero. The first condition applies to the positive elements of α∗A
with the requirement that their corresponding terms in the gradient be zero. The derivatives

of these terms are given by:

∂S

∂αiA

∣∣∣∣
α∗A

= (K(XA,XA)α∗A)i − (K(XA,XB)α∗B)i − 1

= −(K+
ABα

∗
B)i − (K−Aα

∗
A)i − 1 + (KAα

∗
A)i + (K−ABα

∗
B)i (2.38)

This condition applies to the support vectors. For non-support vectors corresponding

to them being zero we have the second condition. Fixed points occur when one of the

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 42

following two conditions hold. Either the element to be updated is greater than zero and

multiplicative factor is unity or the element is zero. We can see that in the case of the ele-

ment being non-zero the multiplicative factor is indeed one. Similar analysis can be done

for coefficients corresponding to group B. Thus the updates have fixed points wherever the

objective reaches its minimum value. We note that at the fixed point M3 and MUSIK are

the same.

2.6.9 Asymptotic convergence

The M3 algorithm [104] observed a rapid decay of non-support vector coefficients and

did an analysis of rates of asymptotic convergence. They perturb one of the non-support

vector coefficients, say αi away from the fixed point to some nonzero value δαi and fix

all the remaining values. Applying their multiplicative update from (2.23) gives a bound

on the asymptotic rate of convergence.

Let di = K(xi,w)/
√
K(w,w) denote the perpendicular distance in the feature space

from xi to the maximum margin hyperplane and d = mini di = 1/
√
K(w,w) denote the

one-sided margin to the maximum-margin hyperplane. Also, li =
√
K(xi,xi) denotes

the distance of xi to the origin in the feature space and l = maxi li denote the largest such

distance. The following bound on the asymptotic rate of convergence γM3

i was established:

γM
3

i ≤ [1 +
1

2

(di − d)d

lil
]−1 (2.39)

We do a similar analysis for rate of asymptotic convergence of the multiplicative up-

dates of the MUSIK algorithm in the case of nonnegative kernels. We perturb one of the

non-support vector coefficients fixing all the other coefficients and apply the multiplica-

tive update. This enables us to calculate a bound on rate of convergence. A bound on the

asymptotic rate of convergence in terms of geometric quantities is given as follows:

γMUSIK
i ≤ [1 +

(di − d)d

lil
]−1 (2.40)

The proof sketch can be found in appendix. It is for non-negative kernels, but we note

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 43

that they constitute the majority of the popular and widely used kernels. We note that our

bound is tighter compared to the M3 algorithm as γMUSIK
i ≤ γM

3

i .

2.6.10 Adapting NMF algorithms for SVM

Multiplicative updates are not the only way to solve NMF-type problems. For exam-

ple Lin [75] shows a fast projected-gradient algorithm for solving NMF. Zdunek and Ci-

choki [117] , Dhillon and Sra [29] etc give more algorithms for solving NMF. Projected

gradient algorithm can be used for solving SVM with a slight modification to the algo-

rithm. The derivative has to be modified and the rest of the algorithm of updating dual

vectors α corresponding to group A and group B alternatively remains.

We will show how to adapt the Landweber method for solving NMF [117] to solve the

SVM problem.

Taking the gradient as given in equation 2.15, we can update the dual variables as

follows:

αA = αA − η � d (2.41)

η =
2

KA1
(2.42)

αA = max(0,αA), (2.43)

where d corresponds to derivative in 2.15 and max is applied to two vectors element-wise.

Similarly, we update the dual variables corresponding to group B given by the vector αB.

2.6.11 Power methods

Following the work in [99], we can increase the convergence speed of the algorithms by

raising the multiplicative factor in the updates by a power greater than one. In the original

work, it was applied to NMF as the Adaptive Overrelaxed NMF(ANMF) algorithm. Given

a cost function C(α) over nonnegative α, we can define its positive and negative compo-

nent of the derivative by pd = ∂C(α)+

∂αi
, nd = ∂C(α)−

∂αi
respectively. The multiplicative

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 44

updates can now be written as follows:

αi = αi(
nd

pd
)γ (2.44)

where γ is a real number greater than one. This is applied to MUSIK and we get faster

convergence as expected.

2.7 Experiments

In order to demonstrate practical applicability of theoretical properties proved in previous

section, we test the above updates on two real world problems consisting of breast can-

cer dataset and aspect-angle dependent sonar signals from the UCI Repository [88]. They

contain 683 and 208 labelled examples respectively. The breast cancer dataset was split

into 80% and 20% for training and test sets respectively. The sonar dataset was equally

divided into test and training sets. The support vectors were all initialized to one. Different

kernels involving polynomial and radial basis functions were applied to the dataset. Mis-

classification rates on the test datasets after 750 iterations are shown in Table 2.1. They

match previously reported error rates on this dataset [104]. The rate of convergence of

support vectors is shown in Figure 2.11.

These results support our derivations and demonstrate that the algorithm can be used

for training SVM with non-negative kernels. However, since the problem is convex and

there exists a unique solution all correct algorithms will converge to the same solution and

arrive at similar classification error rates.

In the following we test the MUSIK algorithm on a medium sized problem of USPS

handwritten digits data set. It contains 7291 training examples. We consider the binary

class problem with all the samples having digit ’2’ as labels belong to one and all the rest

to another. This was compared with the state of the art multiplicative updates for NQP

from [104].

For the experiments we have normalized the USPS dataset to lie in the range [−1, 1]

and smoothed it with a 2 × 2 Gaussian kernel. The non-negative kernel used for the

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 45

i support vectors εt(%) εg(%)

0 3.8 0.0

1 2.5 3.0

2 1.5 1.5

4 0.5 1.5

8 0.2 2.3

16 0.0 2.3

64 0.0 2.3

Figure 2.11: Rate of convergence of multiplicative updates for breast cancer dataset using
RBF kernel with σ = 3. i is the iteration number, εt is the training error, εg is the test error.
The support vectors have been rearranged for visualization into active and inactive.

experiment was the Gaussian radial basis function K(xi,xj) = e‖xi−xj‖2/2σ2 , with σ =

6.0. The slack penalty was set to 10.

Our algorithm is slightly faster per iteration due to an extra square root and multi-

plication per training pattern in the M3 algorithm. We ignore that slight difference and

plot the objective function per iteration of both algorithms on the USPS data set in Fig-

ure 2.12. The result agrees with the theoretically shown upper bound and the simulations

from Figure 2.9.

Figure 2.13 shows misclassification rate on the training samples using MUSIK and M3

algorithm.

To test the MUSIK algorithm with sign-insensitive kernel we generate an artificial

dataset with 50 samples of each class. We compare convergence speed of M3, MUSIK,

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 46

Kernel
Breast Sonar

M3 M KA M3 M KA

Po
ly

4 2.26 2.26 2.26 9.62 9.62 9.62

6 3.76 3.76 3.76 10.58 10.58 10.58
G

au
ss

ia
n

3 2.26 2.26 2.26 11.53 11.53 11.53

1 0.75 0.75 0.75 7.69 7.69 7.69

Table 2.1: Misclassification rates (%) on the breast cancer and sonar datasets after conver-
gence of the M3, MUSIK (M) and Kernel Adatron (KA) algorithms. Polynomial kernels
of degree 4 and 6 and Gaussian kernels of σ 1 and 3 were used.

and MUSIK with semiNMF updates. Results are shown in Figure 2.14.

2.7.1 Proofs

In the following subsections we show how to prove the updates are non-increasing and

bound the rate of convergence.

Multiplicative updates and convergence

We now derive the update rules for the dual variables α. Let us denote the matrices

Φ(XA),Φ(XB) by the matricesM ,N and the vectors αA,αB by u,v respectively.

The objective is now given by:

F (v) =
1

2
‖Mu−Nv‖22 −

∑
i

vi (2.45)

We define an auxillary function G(v,vt) with the properties that G(v,v) = F (v) and

G(v,vt) ≥ F (v). The multiplicative update rule is found at each iteration by minimizing

the auxiliary function :

vt+1 = arg min
v

G(v,vt) (2.46)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 47

Figure 2.12: The objective function (2.14) versus training iteration number (log scale)
on the USPS handwritten digits dataset for the M3 and the MUSIK algorithms (down is
better).

We know that this does not increase the objective function F ,as we have

F (vt+1) ≤ G(vt+1,vt) ≤ G(vt,vt) = F (vt) (2.47)

Define G as follows:

G(v,vt) = F (vt) + (v − vt)∇F (vt) (2.48)

+
1

2
(v − vt)L(vt)(v − vt)

where the diagonal matrix L(vt) is defined as

Lab(v
t) = δab

(K−BAu+K+
Bv

t)a
vta

(2.49)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 48

Figure 2.13: Percentage of the misclassification versus the training iteration number (log
scale) on the USPS handwritten digits dataset for the M3 and the MUSIK algorithms (down
is better).

We see that G(v,v) = F (v) trivially. The second property that G(v,vt) ≥ F (v) is

satisfied if

0 ≤ (v − vt)T [L(vt)−KB](v − vt) (2.50)

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 49

Figure 2.14: Convergence performance on a dataset containing negative and positive val-
ues (shown on the left side) with polynomial kernel of degree 3. MUSIK algorithm with
semiNMF updates from Section 2.6.3 is called sMUSIK in the legend.

This can be split into three parts as follows:

L−KB = L1 + L2 + L3 (2.51)

L1 = diag(
K−BAu

v
) (2.52)

L2 = diag(
(K+

Bv
t)

vt
)−K+

B (2.53)

L3 = K−B (2.54)

We have L1 +L3 to be positive semidefinite by construction in Section 2.6.3. If L2 can

be shown to positive semidefinite then the sum is positive semidefinite. L2 is shown to be

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 50

true using the argument in [67] which is as follows:

Qab(v
t) = vta(L2(v

t))abv
t
b (2.55)

νTQν =
∑
ab

νaQabνb (2.56)

=
∑
ab

(K+
B)abv

t
av

t
b[

1

2
ν2
a +

1

2
ν2
b − νaνb] (2.57)

=
1

2

∑
ab

(K+
B)abv

t
av

t
b(νa − νb)2 (2.58)

≥ 0 (2.59)

We select the minimum of G. This is found by setting the gradient of G to zero.

vt+1 = vt − vt

K−BAu+K+
Bv
� (KBv

t −KBAu− 1)

= vt � K+
BAu+K−Bv + 1

K−BAu+K+
Bv

(2.60)

This is the update rule for v and similarly we can derive the update rule for u.

Convergence rate

Let the fixed point be α∗ . Let us denote K(XA,XA)α∗A by z+ and K(XA,XB)α∗B by

z−. If we choose an ith non-support vector coefficient from αA, then we have z+i − z−i ≥

1.

Let the multiplicative factor be denoted by γi. We then have:

1

γi
=

z+i
z−i + 1

(2.61)

= 1 +
z+i − z−i − 1

z−i + 1
(2.62)

≥ 1 +
K(xi,w)− 1

z+i
(2.63)

where we have w =
∑

i α
∗
ixiyi is the normal vector to the maximum margin hyperplane.

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 51

We used the following:

z+i − z−i =
∑
j∈A

K(xi,xj)α
∗
j −

∑
k∈B

K(xi,xk)α
∗
k

= K(xi,w) (2.64)

We now obtain a bound on the denominator:

z+i =
∑
j∈A

K(xi,xj)α
∗
j (2.65)

≤ max
k∈A

K(xi,xk)
∑
j∈A

α∗j (2.66)

≤
√
K(xi,xi) max

k∈A

√
K(xk,xk)K(w,w) (2.67)

We used the Cauchy-Schwartz inequality for kernels and an upper bound for the sum of

vector α∗A.

We do a similar analysis by perturbing an ith non-support vector coefficient from group

B. Combining the analysis, we have a lower bound as follows:

1

γi
≥ 1 +

K(xi,w)− 1√
K(xi,xi) maxk

√
K(xk,xk)K(w,w)

2.8 Conclusions and Future Work

We showed a reduction from TNNLS to a single-class SVM. This gave us insight into the

connection between nonnegativity and sparsity and further enabled us to propose an effi-

cient algorithm to solve the TNNLS problem. The new algorithm is simple to implement

and involves combining an SVM solver (such as OCAS) with an exact NNLS solver. We

showed its application to random problems, as well as to two real examples of dose cal-

culation in radiation therapy. Also, we showed that nonnegativity corresponds to sparsity

depending on how many elements lie on the maximum-margin hyperplane. This explains

the connection between nonnegativity and sparsity posed in the work on compressive sens-

ing by [89]. Also, the running time depended on the spread of data and we would like to

explore when it makes sense to use the reduction and how to set the parameters in the

www.manaraa.com

Chapter 2. Nonnegativity — Structural connections 52

SVM to best trade-off between the approximate SVM solver and an exact NNLS solver.

Our approach seems to be more suitable for “fat” matrices, where the number of rows

and columns are similar. The NNLS solver used in [76] used advanced techniques such

as multi-threading and vector commands, and has only floating point precision, while our

TNNLS solver has double precision. A similar speed up is conceivable if solvers used in

this paper were implemented in a similar manner. Also, we adapted a dual SVM solver to

solve the NNLS problem and similar to the primal SVM solver, it gave us a speedup over

the state-of-the-art algorithms.

We have derived simple multiplicative update rules for solving the maximum-margin

classifier problem in SVMs. No additional parameter tuning is required and the conver-

gence is guaranteed. In practice the method converges within a few iterations. Extensions

to multiple kernel learning are left as future work. The updates could also be used as part

of a subset method which could potentially speed up MUSIK algorithm. MUSIK shares

the utility of M3 algorithm in that it is easy to implement in higher-level languages like

MATLAB with application to small datasets. It also shares the drawback of M3 in its

inability to directly set a variable to zero. However, we have shown MUSIK to have an

asymptotically faster rate of convergence compared to M3 algorithm and we believe this

provides a motivation for further research in multiplicative updates for support vector ma-

chines. Also the derivation was constructed in such a way that it highlights the connection

between SVM and NMF. We also show a connection to the Kernel Adatron algorithm.

Sequential updates similar to ones in KA have been used to solve the NMF problem and

it would be interesting if heuristics used in KA can be imported to solve NMF-type prob-

lems. Since multiplicative updates emerge in different settings and algorithms it might be

interesting to find the pattern of when such updates are possible and how to automatically

derive them. Our presentation of NMF and SVM correspondence can be considered a step

towards this direction.

www.manaraa.com

53

Chapter 3

Sparsity — Matrix factorization

Matrix factorization arises in a wide range of application domains and is useful for ex-

tracting the latent features in the dataset (Figure 3.1). In particular, we consider matrix

factorizations which impose the following requirements:

• nonnegativity

• low-rankedness

• sparsity

Nonnegativity is a natural constraint when modeling data with physical constraints such

as chemical concentrations in solutions, pixel intensities in images and radiation dosages

for cancer treatment. Low-rankedness is useful for learning a lower dimensionality rep-

resentation. Sparsity is useful for modeling the conciseness of the representation or that

of the latent features. Imposing all these requirements on our matrix factorization leads to

the sparse nonnegative matrix factorization (SNMF) problem.

SNMF enjoys quite a few formulations [7, 48, 47, 43, 85, 58, 92, 93] with successful

applications to single-channel speech separation [100] and micro-array data analysis [58,

92].

However, algorithms [48, 43] for solving SNMF which utilize the mixed norm of L1/L2

as their sparsity measure are slow and do not scale well to large datasets. Thus, we develop

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 54

an efficient algorithm to solve this problem and has the following ingredients:

• A theoretically efficient projection operator (O(m logm)) to enforce the

user-defined sparsity where m is the dimensionality of the feature vector as opposed

to the previous approach [48].

• Novel sequential updates which provide the bulk of our speedup compared to the

previously employed batch methods [48, 43].

Figure 3.1: (Left) Features learned from the ORL dataset (Scikit-learn package was used)
with various matrix factorization methods such as principal component analysis (PCA),
independent component analysis (ICA), and dictionary learning. The relative merit of the
various matrix factorizations depends on both the signal domain and the target application
of interest. (Right) Features learned under the sparse NMF formulation where roughly
half the features were constrained to lie in the interval [0.2, 0.4] and the rest are fixed to
sparsity value 0.7. This illustrates the flexibility that the user has in fine tuning the feature
sparsity based on prior domain knowledge. White pixels in this figure correspond to the
zeros in the features.

3.1 Preliminaries and Previous Work

In this section, we give an introduction to the nonnegative matrix factorization (NMF) and

SNMF problems. Also, we discuss some widely used algorithms from the literature to

solve them.

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 55

Both these problems share the following problem and solution structure. At a high-

level, given a nonnegative matrix X of size m × n, we want to approximate it with a

product of two nonnegative matrices W,H of sizes m× r and r × n, respectively:

X ≈WH. (3.1)

The nonnegative constraint on matrix H makes the representation a conical combination

of features given by the columns of matrix W. In particular, NMF can result in sparse

representations, or a parts-based representation, unlike other factorization techniques such

as principal component analysis (PCA) and vector quantization (VQ). A common theme in

the algorithms proposed for solving these problems is the use of alternating updates to the

matrix factors, which is natural because the objective function to be minimized is convex

in W and in H, separately, but not in both together. Much effort has been focused on

optimizing the efficiency of the core step of updating one of W,H while the other stays

fixed.

3.1.1 Nonnegative Matrix Factorization

Factoring a matrix, all of whose entries are nonnegative, as a product of two low-rank

nonnegative factors is a fundamental algorithmic challenge. This has arisen naturally in

diverse areas such as image analysis [65], micro-array data analysis [58], document clus-

tering [114], chemometrics [63], information retrieval [45] and biology applications [13].

For further applications, see the references in the following papers [1, 25].

We will consider the following version of the NMF problem, which measures the re-

construction error using the Frobenius norm [66]:

min
W,H

1

2
‖X−WH‖2F s.t. W ≥ 0, H ≥ 0, ‖Wj‖2 = 1, ∀j ∈ {1, · · · , r} (3.2)

where ≥ is element-wise. We use subscripts to denote column elements. Simple multi-

plicative updates were proposed in [66] to solve the NMF problem. This is attractive for

the following reasons:

• Unlike additive gradient descent methods, there is no arbitrary learning rate param-

eter that needs to be set.

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 56

• The nonnegativity constraint is satisfied automatically, without any additional pro-

jection step.

• The objective function converges to a limit point and the values are non-increasing

across the updates [66].

Algorithm 2 is an example of the kind of multiplicative update procedure used in the

literature [66]. The algorithm alternates between updating the matrices W and H (we

have only shown the updates for H—those for W are analogous).

Algorithm 2 nnls-mult(X,W,H)
1: repeat

2: H = H� W>X
W>WH

.

3: until convergence

4: Output: Matrix H.

Here, � indicates element-wise (Hadamard) product and matrix division is also

element-wise. To remove the scaling ambiguity, the norm of columns of matrix W are set

to unity. Also, a small constant, say 10−9, is added to the denominator in the updates to

avoid division by zero.

Besides multiplicative updates, other algorithms have been proposed to solve the NMF

problem based on projected gradient [75], block pivoting [60], sequential constrained op-

timization [23] and greedy coordinate-descent [49].

3.1.2 Sparse Nonnegative Matrix Factorization

The nonnegative decomposition is in general not unique [34]. Furthermore, the features

may not be parts-based if the data resides well inside the positive orthant. To address these

issues, sparseness constraints have been imposed on the NMF problem.

Sparse NMF can be formulated in many different ways. From a user point of view, we

can split them into two classes of formulations: explicit and implicit. In explicit versions

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 57

of SNMF [48, 43], one can set the sparsities of the matrix factors W ,H directly. On

the other hand, in implicit versions of SNMF [58, 92], the sparsity is controlled via a

regularization parameter and is often hard to tune to specified sparsity values a priori.

However, the algorithms for implicit versions tend to be faster compared to the explicit

versions of SNMF.

In this paper, we consider the explicit sparse NMF formulation proposed by

Hoyer [48]. To make the presentation easier to follow, we first consider the case where

the sparsity is imposed on one of the matrix factors, namely the feature matrix W—the

analysis for the symmetric case where the sparsity is instead set on the other matrix factor

H is analogous. The case where sparsity requirements are imposed on both the matrix

factors is dealt with in the Appendix. The sparse NMF problem formulated [48] with

sparsity on matrixW is as follows:

min
W,H

f(W ,H) =
1

2
‖X−WH‖2F s.t. W ≥ 0,H ≥ 0,

‖Wj‖2 = 1, sp(Wj) = α, ∀j ∈ {1, · · · , r} (3.3)

Sparsity measure for a d-dimensional vector x is given by:

sp(x) =

√
d− ‖x‖1/‖x‖2√

d− 1
(3.4)

The sparsity measure (3.4) defined above has many appealing qualities. Some of which

are as follows:

• The measure closely models the intuitive notion of sparsity as captured by the L0

norm. So, it easy for the user to specify sparsity constraints from prior knowledge

of the application domain.

• Simultaneously, it is able to avoid the pitfalls associated with directly optimizing

the L0 norm. Desirable properties for sparsity measures have been previously ex-

plored [51] and it satisfies all of these properties for our problem formulation. The

properties can be briefly summarized as: (a) Robin Hood — Spreading the energy

from larger coordinates to smaller ones decreases sparsity, (b) Scaling — Sparsity

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 58

is invariant to scaling, (c) Rising tide — Adding a constant to the coordinates de-

creases sparsity, (d) Cloning — Sparsity is invariant to cloning, (e) Bill Gates — One

big coordinate can increase sparsity, (f) Babies — coordinates with zeros increase

sparsity.

• The above sparsity measure enables one to limit the sparsity for each feature to lie in

a given range by changing the equality constraints in the SNMF formulation (3.3) to

inequality constraints [43]. This could be useful in scenarios like fMRI brain anal-

ysis, where one would like to model the prior knowledge such as sizes of artifacts

are different from that of the brain signals. A sample illustration on a face dataset

is shown in Figure 3.1 (Right). The features are now evenly split into two groups of

local and global features by choosing two different intervals of sparsity.

A gradient descent-based algorithm called Nonnegative Matrix Factorization with

Sparseness Constraints (NMFSC) to solve SNMF was proposed [48]. Multiplicative up-

dates were used for optimizing the matrix factor which did not have sparsity constraints

specified. In [43] two new algorithms were proposed which also solved this problem by

sequential cone programming and utilized general purpose solvers like MOSEK (http:

//www.mosek.com). We will consider the faster one of these called tangent-plane con-

straint (TPC) algorithm. However, both these algorithms, namely NMFSC and TPC, solve

for the whole matrix of coefficients at once. In contrast, we propose a block coordinate-

descent strategy which considers a sequence of vector problems where each one can be

solved in closed form efficiently.

3.2 The Sequential Sparse NMF Algorithm

We present our algorithm which we call Sequential Sparse NMF (SSNMF) to solve the

SNMF problem as follows:

First, we consider a problem of special form which is the building block (Algorithm 3)

of our SSNMF algorithm and give an efficient, as well as exact, algorithm to solve it.

http://www.mosek.com
http://www.mosek.com

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 59

Second, we describe our sequential approach (Algorithm 4) to solve the subproblem of

SNMF. This uses the routine we developed in the previous step. Finally, we combine

our routines developed in the previous two steps along with standard solvers (for instance

Algorithm 2) to complete the SSNMF Algorithm (Algorithm 5).

3.2.1 Sparse-opt

Sparse-opt routine solves the following subproblem which arises when solving

problem (3.3):

max
y≥0

b>y s.t. ‖y‖1 = k, ‖y‖2 = 1 (3.5)

where vector b is of size m. This problem has been previously considered [48], and an

algorithm to solve it was proposed which we will henceforth refer to as the Projection-

Hoyer. Similar projection problems have been recently considered in the literature and

solved efficiently [36, 20].

Observation 1. For any i, j, we have that if bi ≥ bj , then yi ≥ yj .

Let us first consider the case when the vector b is sorted. Then by the previous obser-

vation, we have a transition point p that separates the zeros of the solution vector from the

rest.

Observation 2. By applying the Cauchy-Schwarz inequality on y and the all ones vector,

we get p ≥ k2.

The Lagrangian of the problem (3.5) is :

L(y, µ, λ,γ) = b>y + µ

(
m∑
i=1

yi − k

)
+
λ

2

(
m∑
i=1

y2i − 1

)
+ γ>y

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 60

Setting the partial derivatives of the Lagrangian to zero, we get by observation 1:

m∑
i=1

yi = k,

m∑
i=1

y2i = 1

bi + µ(p) + λ(p)yi = 0,∀i ∈ {1, 2, · · · , p}

γi = 0,∀i ∈ {1, · · · , p}

yi = 0,∀i ∈ {p+ 1, · · · ,m}

where we account for the dependence of the Lagrange parameters λ, µ, and γ on the

transition point p. We compute the objective value of problem (3.5) for all transition points

p in the range from k2 to m and select the one with the highest value. In the case, where

the vector b is not sorted, we just simply sort it and note down the sorting permutation

vector. The complete algorithm is given in Algorithm 3. The dominant contribution to the

running time of Algorithm 3 is the sorting of vector b and therefore can be implemented in

O(m logm) time1. Contrast this with the running time of Projection-Hoyer whose worst

case is O(m2) [48, 107].

3.2.2 Sequential Approach —Block Coordinate Descent

Previous approaches for solving SNMF [48, 43] use batch methods to solve for sparsity

constraints. That is, the whole matrix is updated at once and projected to satisfy the con-

straints. We take a different approach of updating a column vector at a time. This gives us

the benefit of being able to solve the subproblem (column) efficiently and exactly. Subse-

quent updates can benefit from the newly updated columns resulting in faster convergence

as seen in the experiments.

In particular, consider the optimization problem (3.3) for a column j of the matrix W

while fixing the rest of the elements of matrices W,H:

min
Wj≥0

f̃(Wj) =
1

2
g‖Wj‖22 + u>Wj s.t. ‖Wj‖2 = 1, ‖Wj‖1 = k

1This can be further reduced to linear time by noting that we do not need to fully sort the input
in order to find p∗.

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 61

Algorithm 3 Sparse-opt(b, k)

1: Set a = sort(b) and p∗ = m. Get a mapping π such that ai = bπ(i) and aj ≥ aj+1 for

all valid i, j.

2: Compute values of µ(p), λ(p) as follows:

3: for p = dk2e to m do

4: λ(p) = −
√

p
∑p

i=1 a
2
i−(

∑p
i=1 ai)

2

(p−k2)

5: µ(p) = −
∑p

i=1 ai
p
− k

p
λ(p)

6: if a(p) < −µ(p) then

7: p∗ = p− 1

8: break

9: end if

10: end for

11: Set xi = −ai+µ(p
∗)

λ(p∗)
, ∀i ∈ {1, · · · , p∗} and to zero otherwise.

12: Output: Solution vector y where yπ(i) = xi.

where g = H>jHj and u = −XH>j +
∑

i 6=jWi(HH
>)ij . This reduces to the prob-

lem (3.5) for which we have proposed an exact algorithm (Algorithm 3). We update the

columns of the matrix factor W sequentially as shown in Algorithm 4. We call it se-

quential for we update the columns one at a time. Note that this approach can be seen as

an instance of block coordinate descent methods by mapping features to blocks and the

Sparse-opt projection operator to a descent step.

3.2.3 SSNMF Algorithm for Sparse NMF

We are now in a position to present our complete Sequential Sparse NMF (SSNMF) algo-

rithm. By combining Algorithms 2, 3 and 4, we obtain SSNMF (Algorithm 5).

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 62

Algorithm 4 sequential-pass(X,W,H)

1: C = −XH> + WHH>

2: G = HH>

3: repeat

4: for j = 1 to r (randomly) do

5: Uj = Cj −WjGjj

6: t = Sparse-opt(−Uj, k).

7: C = C + (t−Wj)G
>
j

8: Wj = t.

9: end for

10: until convergence

11: Output: Matrix W.

Algorithm 5 ssnmf(X,W,H)
1: repeat

2: W = sequential-pass(X,W,H)

3: H = nnls-mult(X,W,H)

4: until convergence

5: Output: Matrices W,H.

3.3 Implementation Issues

For clarity of exposition, we presented the plain vanilla version of our SSNMF Algo-

rithm 5. We now describe some of the actual implementation details.

• Initialization: Generate a positive random vector v of size m and obtain z =

Sparse-opt(v, k) where k =
√
m − α

√
m− 1 (from equation (3.4)). Use the so-

lution z and its random permutations to initialize matrix W. Initialize the matrix H

to uniform random entries in [0, 1].

• Incorporating faster solvers: We use multiplicative updates for a fair comparison

with NMFSC and TPC. However, we can use other NNLS solvers [75, 60, 23, 49]

to solve for matrix H . Empirical results (not reported here) show that this further

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 63

speeds up the SSNMF algorithm.

• Termination: In our experiments, we fix the number of alternate updates or equiv-

alently the number of times we update matrix W . Other approaches include spec-

ifying total running time, relative change in objective value between iterations or

approximate satisfaction of KKT conditions.

• Sparsity constraints: We have primarly considered the sparse NMF model as formu-

lated in [48]. This has been generalized in [43] by relaxing the sparsity constraints

to lie in user-defined intervals. Note that, we can handle the relaxed formulation [43]

by making a trivial change to Algorithm 4.

3.4 Experiments and Discussion

In this section, we compare the performance of our algorithm with the state-of-the-art

NMFSC and TPC algorithms [48, 43]. Running times for the algorithms are presented

when applied to one synthetic and three real-world datasets. Experiments report recon-

struction error (‖X −WH‖F) instead of objective value for convenience of display. For

all experiments on the datasets, we ensure that our final reconstruction error is always bet-

ter than that of the other two algorithms. Our algorithm was implemented in MATLAB

(http://www.mathworks.com) similar to NMFSC and TPC. All of our experiments

were run on a 3.2Ghz Intel machine with 24GB of RAM and the number of threads set to

one.

3.4.1 Datasets

For comparing the performance of SSNMF with NMFSC and TPC, we consider the fol-

lowing synthetic and three real-world datasets :

• Synthetic: 200 images of size 9 × 9 as provided in [43] (in their code implementa-

tion).

http://www.mathworks.com

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 64

• CBCL: Face dataset of 2429 images of size 19× 19 and can be obtained at http:

//cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.

• ORL: Face dataset that consists of 400 images of size 112×92 and can be obtained at

cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

• sMRI: Structural MRI scans of 269 subjects taken at the John Hopkins University

were obtained. The scans were taken on a single 1.5T scanner with the imag-

ing parameters set to 35mm TR, 5ms TE, matrix size of 256 × 256. We segment

these images into gray matter, white matter and cerebral spinal fluid images, us-

ing the software program SPM5 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm5/), followed by spatial smoothing with a Gaussian kernel of

10× 10× 10 mm. This results in images which are of size 105× 127× 46.

Problem size (omitted scale factor = 100,000)

oyer

Figure 3.2: Mean running times for Sparse-opt and the Projection-Hoyer are presented for
random problems. The x-axis plots the dimension of the problem while the y-axis has the
running time in seconds. Each of the subfigures corresponds to a single sparsity value in
{0.2, 0.4, 0.6, 0.8}. Each datapoint corresponds to the mean running time averaged over
40 runs for random problems of the same fixed dimension.

3.4.2 Comparing Performances of Core Updates

We compare our Sparse-opt (Algorithm 3) routine with the competing

Projection-Hoyer [48]. In particular, we generate 40 random problems for each sparsity

constraint in {0.2, 0.4, 0.6, 0.8} and a fixed problem size. The problems are of size 2i×100

where i takes integer values from 0 to 12. Input coefficients are generated by drawing

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 65

samples uniformly at random from [0, 1]. The mean values of the running times for Sparse-

opt and the Projection-Hoyer for each dimension and corresponding sparsity value are

plotted in Figure 3.2.

We compare SSNMF with SSNMF+Proj on the CBCL dataset. The algorithms were

run with rank set to 49. The running times are shown in Figure 3.3. We see that in low-

50
60
70
80
90

100
0.2

SSNMF
SSNMF+Proj

0.3 0.4 0.5

100 101

time (seconds)

40
50
60
70
80
90

re
co

ns
tr

uc
tio

n
er

ro
r

0.6

100 101

time (seconds)

0.7

100 101

time (seconds)

0.8

100 101 102

time (seconds)

0.9

Figure 3.3: Running times for SSNMF and SSNMF+Proj algorithms for the CBCL face
dataset with rank set to 49 and sparsity values ranging from 0.2 to 0.9

dimensional datasets, the difference in running times are very small.

3.4.3 Comparing Overall Performances

SSNMF versus NMFSC and TPC: We plot the performance of SSNMF against

NMFSC and TPC on the synthetic dataset provided in [43] in Figure 3.4. We used the

default settings for both NMFSC and TPC using the software provided by the authors.

Our experience with TPC was not encouraging on bigger datasets and hence we show its

performance only on the synthetic dataset. It is possible that the performance of TPC can

be improved by changing the default settings but we found it non-trivial to do so.

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 66

0.5

1.0

1.5

2.0

0.2

SSNMF
NMFSC
TPC

0.3 0.4 0.5

10-2 10-1 100 101

time (seconds)

0.0

0.5

1.0

1.5

re
co

ns
tr

uc
tio

n
er

ro
r

0.6

10-2 10-1 100 101

time (seconds)

0.7

10-2 10-1 100 101

time (seconds)

0.8

10-2 10-1 100 101

time (seconds)

0.9

Figure 3.4: Running times for SSNMF and NMFSC and TPC algorithms on the synthetic
dataset where the sparsity values range from 0.2 to 0.8 and number of features is 5. Note
that SSNMF and NMFSC are over an order of magnitude faster than TPC.

6

7

8

9

10

0.1

SSNMF
NMFSC

0.2 0.3 0.4

100 101 102 103

time (seconds)

5

6

7

8

9

re
co

ns
tr

uc
tio

n
er

ro
r

0.5

101 102 103

time (seconds)

0.6

101 102 103

time (seconds)

0.7

101 102 103 104

time (seconds)

0.8

Figure 3.5: Convergence plots for the ORL dataset with sparsity from [0.1, 0.8] for the
NMFSC and SSNMF algorithms. Note that we are an order of magnitude faster, especially
when the sparsity is higher.

SSNMF versus NMFSC: To ensure fairness, we removed logging information from

NMFSC code [48] and only computed the objective for equivalent number of matrix up-

dates as SSNMF. We do not plot the objective values at the first iteration for convenience

of display. However, they are the same for both algorithms because of the shared initial-

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 67

400
500
600
700
800
900

0.1SSNMF
NMFSC

0.2 0.3 0.4

103 104

time (seconds)

300
400
500
600
700
800

re
co

ns
tr

uc
tio

n
er

ro
r

0.5

103 104

time (seconds)

0.6

103 104

time (seconds)

0.7

103 104

time (seconds)

0.8

Figure 3.6: Running times for SSNMF and NMFSC algorithms for the sMRI dataset with
rank set to 40 and sparsity values of α from 0.1 to 0.8. Note that for higher sparsity
values we converged to a lower reconstruction error and are also noticeably faster than the
NMFSC algorithm.

ization . We ran the SSNMF and NMFSC on the ORL face dataset. The rank was fixed

at 25 in both the algorithms. Also, the plots of running times versus objective values are

shown in Figure 3.5 corresponding to sparsity values ranging from 0.1 to 0.7. Additionally,

we ran our SSNMF algorithm and NMFSC algorithm on a large-scale dataset consisting

of the structural MRI images by setting the rank to 40. The running times are shown in

Figure 3.6.

3.4.4 Main Results

We compared the running times of our Sparse-opt routine versus the Projection-Hoyer and

found that on the synthetically generated datasets we are faster on average.

Our results on switching the Sparse-opt routine with the Projection-Hoyer did not slow

down our SSNMF solver significantly for the datasets we considered. So, we conclude that

the speedup is mainly due to the sequential nature of the updates (Algorithm 4).

Also, we converge faster than NMFSC for fewer number of matrix updates. This can

be seen by noting that the plotted points in Figures 3.5 and 3.6 are such that the number

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 68

of matrix updates are the same for both SSNMF and NMFSC. For some datasets, we

noted a speedup of an order of magnitude making our approach attractive for computation

purposes.

Finally, we note that we recover a parts-based representation as previously shown [48].

An example of the obtained features by NMFSC and ours is shown in Figure 3.7.

Figure 3.7: Features from (Left) NMFSC algorithm and (Right) SSNMF algorithm
(Right) using the ORL face dataset for sparsity values 0.5, 0.6, 0.75. Note that SSNMF
algorithm gives a parts-based representation similar to the one recovered by NMFSC.

3.5 Connections to Related Work

Other SNMF formulations have been considered [47, 85, 58, 92, 93]. SNMF formulations

using similar sparsity measures as used in this paper have been considered for applications

in speech and audio recordings [111, 110].

We note that our sparsity measure has all the desirable properties, extensively discussed

in [51], except for one (“cloning”). Cloning property is satisfied when two vectors of same

sparsity when concatenated maintain their sparsity value. Dimensions in our optimization

problem are fixed and thus violating the cloning property is not an issue. Compare this

with the L1 norm that satisfies only one of these properties (namely “rising tide”). Rising

tide is the property where adding a constant to the elements of a vector decreases the

sparsity of the vector. Nevertheless, the measure used in [58] is based on the L1 norm. The

properties satisfied by the measure in [92] are unclear because of the implicit nature of the

sparsity formulation.

In [92], it was claimed that the SNMF formulation in [48], as given by problem (3.3)

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 69

does not capture the variance in the data. However, some transformation of the sparsity

values is required to properly match the two formulations [48, 92]. Preliminary results

show that the formulation given in [48] is able to capture the variance in the data if the

sparsity parameters are set appropriately. In [93], it was proposed to tackle the L0 norm

constrained NMF directly by projecting from intermediate unconstrained solutions to the

required L0 constraint. This leads to the well-known problem of getting stuck in local

minima. Indeed, the authors re-initialize their feature matrix with an NNLS solver to

recover from the local suboptimum. Our formulation avoids the local minima associated

with L0 norm by using a smooth surrogate.

3.6 Bi-Sparse NMF

In some applications, it is desirable to set the sparsity on both matrix factors. However,

this can lead to the situation where the variance in the data is poorly captured [92]. To

ameliorate this condition, we formulate it as the following optimization problem and name

it Bi-Sparse NMF:

min
W,H,D

1

2
‖X−WDH‖2F

s.t.W ≥ 0,H ≥ 0,D ≥ 0

‖Wj‖2 = 1, sp(Wj) = α, ∀j ∈ {1, · · · , r}

‖Hi‖2 = 1, sp(Hi) = β, ∀i ∈ {1, · · · , r} (3.6)

where D is a r × r matrix. In the above formulation, we constrain the L2 norms of the

columns of matrix W to unity. Similarly, we constrain the L2 norms of rows of matrix H

to be unity. This scaling is absorbed by the matrix D. Note that this formulation with the

matrix D constrained to be diagonal is equivalent to the one proposed in [48] when both

the matrix factors have their sparsity specified.

We can solve for the matrix D with any NNLS solver. A concrete algorithm is the one

presented in [32] and is reproduced here for convenience (Algorithm 6). If D is a diagonal

matrix, we only update the diagonal terms and maintain the rest at zero. Algorithms 2

www.manaraa.com

Chapter 3. Sparsity — Matrix factorization 70

and 6 can be sped up by pre-computing the matrix products which are unchanged during

the iterations.

Algorithm 6 Diag-mult(X,W,H,D)
repeat

D = D� W>XH
W>WDHH>

until convergence

Output: Matrix D.

Also, the matrix D captures the variance of the dataset when we have sparsity set on

both the matrices W,H.

3.7 Conclusions

We have proposed a new efficient algorithm to solve the sparse NMF problem. Experi-

ments demonstrate the effectiveness of our approach on real datasets of practical interest.

Our algorithm is faster over a range of sparsity values and generally performs better when

the sparsity is higher. The speed up is mainly because of the sequential nature of the up-

dates in contrast to the previously employed batch updates [48]. Also, we presented an

exact and efficient algorithm to solve the problem of maximizing a linear objective with a

sparsity constraint, which is an improvement over the previous approach [48].

Our approach can be extended to other NMF variants [47]. Another possible applica-

tion is the sparse version of nonnegative tensor factorization. A different research direction

would be to scale our algorithm to handle large datasets by chunking [78] and/or take ad-

vantage of distributed/parallel computational settings [9].

www.manaraa.com

71

Chapter 4

Independence — A closer look

Daubechies et al. [28] claims that ICA for fMRI optimizes for sparsity rather than inde-

pendence. This is established by first noting that Infomax and FastICA are two algorithms

widely used for fMRI analysis and then showing that they separate sparse components

better than independent ones on a synthetic dataset. Recreating the synthetic dataset and

conducting additional experiments shows that the FastICA and Infomax algorithms indeed

do what they are designed to do. Both ICA algorithms can separate sources with either

high or low degrees of sparsity, as long as the distributional assumptions of the algorithms

are approximately met. To understand the conditions under which these algorithms work

requires correct interpretation of what the sources are in an ICA formulation. We examine

exactly what the sources are in the examples given in Daubechies et al. [28] and show

that there is an important mismatch between the concept of source therein and what an

ICA source actually is, which is ultimately at the heart of the unsupported conclusions

presented in Daubechies et al. [28].

4.1 Review and critique of the presented evidence

We now briefly review the evidence presented in Daubechies et al. [28] to support

the claim that Infomax [5] and FastICA [52] select for sparsity and not independence.

Daubechies et al. [28] exhibits experimental results in which 1) ICA algorithm perfor-

www.manaraa.com

Chapter 4. Independence — A closer look 72

mance suffers when the assumptions on the sources are violated, and 2) ICA algorithms

can separate sources in certain cases even if the sources are not strictly independent. The

two points above, both of which were already widely known in the ICA community at the

time, are not sufficient evidence to support the claim that ICA selects for sparsity and not

independence. In addition, Daubechies et al. [28] presents a case in which the sources are

somewhat dependent but also very sparse, and Infomax and FastICA do well. This result

is used to claim that it is sparsity rather than independence that matters. We augment this

experiment with new evidence which shows that the same ICA algorithms perform equally

well in the case of both minimum and maximum sparsity (using the definition of sparsity

in Daubechies et al. [28]), suggesting that the role of sparsity (if any) is minor in the

separation performance.

Additional evidence in Daubechies et al. [28] involves a discussion of sparsity in

which it is claimed that ICA can separate Gaussian sources (See Legend of Figure 8 in

Daubechies et al. [28]) which are also sparse (utilizing a definition of sparsity different

from the one initially provided in Daubechies et al. [28]). If true, such a result would

support their claim about the role of sparsity in ICA, since it is well established that blind

ICA algorithms are not able to separate two or more Gaussian sources. However, as we

show, in that example the sources as they are generated are highly non-Gaussian, and the

sparsity mentioned in Daubechies et al. [28] does not actually refer to the sources. Rather,

it refers to vectors that span parts of both sources. This renders their statement incorrect

and hence, does not support the claim being made (see Section 6 for details).

Finally, the paper [28] is focused on showing cases where FastICA and Infomax per-

form well or poorly, and from these cases the claim is made that this applies to ICA of

fMRI in general. There is mention that a more general algorithm [3] does not work for

fMRI, but there is no evidence presented to support this claim. As we later discuss in

Section 9, other ICA algorithms had indeed been used on fMRI data with success, at the

time of the publication [28]. Since then, more flexible ICA algorithms have been applied

to fMRI data and noted to demonstrate even better performance than the widely used In-

fomax and FastICA [71]. Hence, while emphasizing that Infomax and FastICA are not

the only two algorithms that have been applied to fMRI analysis, we also note that the

www.manaraa.com

Chapter 4. Independence — A closer look 73

prevalence of the use of these two is largely due to the availability of the code for these al-

gorithms and their default use in toolbox implementations for fMRI analyses. Since most

of the fMRI community does not specialize in the development of blind source separation

algorithms, they have since opted in general for the use of these two implementations. And

although they do perform reasonably well on fMRI data, sparsity is not the major driver

of this success.

4.2 Experiments on synthetic data: boxes

We now describe the synthetic dataset used in the original paper [28]. Two components

C1 and C2 are generated as follows:

Ci(v) = IVi(v)xiv + [1− IVi(v)]yiv , i ∈ {1, 2} (4.1)

where the Vi are different subsets of V , and IVi(v) denotes the indicator function for v ∈

Vi; the variables xi, yi are independent random variables and v is the sample index. In

Example 1 [28], the cumulative distribution functions (CDFs) of xi are identical and given

by:

Φx(u) =
1

1 + e(2−u)
, (4.2)

i.e., logistic distributions with mean 2 and scale parameter 1 (the standard deviation is

π/
√

3). In Example 2 [28],

Φx(u) =
1

1 + e2(2−u)
(4.3)

(logistic with mean 2, scale parameter 0.5, and standard deviation π/(2
√

3). Here, xi

correspond to the activations. Similarly, the cumulative distribution functions (CDF) of

yi are identical and given by Φy(u) = 1
1+e−1−u , i.e., logistic distributions with mean

1 and scale parameter 1 (the standard deviation is π/
√

3), where yi correspond to the

background. The mixtures are given by:

X1(v) = 0.5C1(v) + 0.5C2(v) (4.4)

X2(v) = 0.3C1(v) + 0.7C2(v). (4.5)

www.manaraa.com

Chapter 4. Independence — A closer look 74

We have V = {1, · · · , 100} × {1, ·, 100}, and in the case of “medium boxes”:

V1 = {11, · · · , 40} × {21, · · · , 70} (4.6)

V2(α) = {31 + α, · · · , 80 + α} × {41 + α, · · · , 80 + α} (4.7)

where α ∈ {−15, · · · , 15}. Furthermore, for Example 2 [28], in the case of “small boxes”,

the sample support sets are:

V1 = {41, · · · , 60} × {31, · · · , 50} (4.8)

V2(α) = {57 + α, · · · , 81 + α} × {46 + α, · · · , 65 + α} (4.9)

and in the case of “large boxes”:

V1(α) = {1, · · · , 48} × {1, · · · , 100} (4.10)

V2(α) = {25 + α, · · · , 74 + α} × {1, · · · , 100} (4.11)

α = {−10, · · · , 20}. In all cases, α controls the relative position of the boxes, and α = 0

gives statistical independence between C1 and C2.

4.3 The statistical properties of synthetic data [28]

Daubechies et al. [28] argues, based largely on results from synthetic datasets using boxes

to represent activated regions of a component (see details above), that it is sparsity rather

than independence that enables the recovery of the components. However, the case where

the algorithms fail is actually due to a mismatch between the algorithms’ assumptions and

the statistical properties of the simulated data. In addition, we demonstrate a case where

they perform best, which corresponds to almost the lowest sparsity (i.e., not sparse). To

facilitate cross-referencing, in the results presented herein, we use the first definition of

sparsity (Vi
V

) provided in Daubechies et al. [28]. Note, however, that the quantification of

sparsity may be ambiguous: see Section 8 below, and the two definitions of sparsity in

Daubechies et al. [28].

Let us first concentrate on the choice of sources. In Figure 1, we see the excess kurtosis

of the simulated sources changes with the relative size of the activation region. For medium

www.manaraa.com

Chapter 4. Independence — A closer look 75

and large boxes, the two cases where Infomax and FastICA are noted to fail, the kurtosis

values are close to that of a Gaussian (i.e., zero), almost corresponding to the two zero-

crossings. Moreover, in these cases the distributions are bimodal, far from the unimodal

super-Gaussian assumptions that underpin the nonlinearities of Infomax and FastICA used

in Daubechies et al. [28]. The paper [28] showed that Infomax with a non-linearity

matched to super-Gaussian sources fails for medium and large boxes, roughly regardless of

the relative position of the box; but it was not noted that the sources C1, C2 were very close

to Gaussian (in the sense of kurtosis) and in disagreement with the nonlinearity. Both of

these facts create very challenging scenarios for ICA algorithms based on the assumption

of unimodal, super-Gaussian sources, as is the case in Infomax and FastICA, and of course

sources are not even close to the “ideal” setup for these algorithms, contrary to the claim

on p.10418 in Daubechies et al. [28]. In fact, under these scenarios components would not

be expected to be well separated with either of these algorithms—because of the mismatch

of the distribution (for Infomax) and an approximately zero kurtosis (for FastICA).

It is noted in Daubechies et al. [28] that the sources are designed by matching their

cumulative distribution function (CDF) to the nonlinearity of the algorithm, resulting in

“optimal” detectability for Example 1 [28] , and (intentionally) enforcing a “slight mis-

match” for Example 2 [28] these two CDFs are actually the same, except for a scaling

factor, which would translate to the so-called scaling ambiguity in ICA. More importantly

though, there is a mismatch in vocabulary between what is being identified as the underly-

ing ICA source in Daubechies et al. [28] and what it actually is in the experiment. Specif-

ically, the nonlinearity matches solely to the activation part of the components thereby

neglecting the background, whereas the ICA source is to be understood as a combina-

tion of the two, and thus has a distribution that is a mixture distribution, i.e., a weighted

sum of both activation and background distributions. Hence the claim (p. 10418, 1st col-

umn): “For the first choice, the parameters of our ICA implementations provide optimal

‘detectability’ in the sense that the nonlinear function defined by the parameter setting of

the algorithm coincides with the CDF of the signal source;” is incorrect since the source

in this linear source separation framework cannot refer to only a part of the underlying

distribution. As it turns out, in Example 2 [28] there is actually a large mismatch (rather

www.manaraa.com

Chapter 4. Independence — A closer look 76

than a “slight mismatch”) with respect to the algorithm’s nonlinearity in that the source

distributions are essentially bimodal (see Figure 1, medium box inset).

Figure 4.1: The excess kurtosis of a source as a function of the relative size of the active
region. A Gaussian has zero excess kurtosis. Here as in Example 2 of the original pa-
per [28]. The four vertical lines at correspond to the relative sizes of the small box, the
medium box, the large box, and a very large box corresponding to the maximal kurtosis
case. Note that the medium and large box experiments have near zero excess kurtosis,
i.e., kurtosis value matching that of a Gaussian. In addition, the pdfs of these sources are
bimodal (see inset figures), ensuring that ICA algorithms designed for unimodal super-
Gaussian distributions such as Infomax and FastICA with standard parameter settings,
will likely fail. At the bottom of the figure are the ISI values (see Equation (1)) for the var-
ious algorithms at those four points (see Table 1 for full list). Also note the best separation
performance of Infomax and FastICA for the maximum kurtosis case, which corresponds
to almost the lowest level of sparsity.

www.manaraa.com

Chapter 4. Independence — A closer look 77

4.4 Boxes revisited

In the boxes experiment, there are four quantities that are varied: the relative position of

the boxes (controlling the amount of overlap), the size of the boxes (small, medium, large),

the distribution of the marginal (i.e., the source), and the joint distribution. The shift of the

box changes the amount of overlap and, thus, the joint distribution/dependence. The box

size controls the sparsity (small box = high sparsity, large box = low sparsity) through the

proportion of , and thus changes the marginal distribution of the sources . Clearly, there

is dependence between all four quantities, which makes interpretation of the results am-

biguous at the least. This is a side effect of the way the sources are sampled in Daubechies

et al. [28] which is not independent and identically distributed (i.i.d.) due to the use of

the indicator function to define boxes in the spatial map (the sampling distribution is not

identical but, instead, conditioned on the location of each sample). With such a design it

is very difficult to understand what causes the experimental differences, which is contrary

to the claim [28] that it is “easy to change each of these characteristics separately”. In

addition, in the experiments, a single fixed mixing matrix is used, which is not an ideal

way to evaluate performance as results are then biased to a specific (and unjustified) set of

mixing matrix parameter choice.

In order to furnish a clear, unbiased interpretation of the effect of the marginal source

distributions (closely related to the box-sizes in Daubechies et al. [28]) on the performance

of ICA algorithms that exploit non-Gaussianity, we first eliminate the effects of all other

parameters by limiting ourselves to the case of two independent sources and . Then we

generate samples directly from marginal distributions that match those in Daubechies et

al. [28] Since the sources defined in Daubechies et al. [28] have distributions that are of

mixture type, we can write the CDF of each source Ci as:

ΦCi
= qΦx + (1− q)Φy (4.12)

where 0 < q ≤ 1 with q = Vi
V

, and then draw a set of i.i.d. samples. Under these

www.manaraa.com

Chapter 4. Independence — A closer look 78

conditions, the joint distribution of all samples reads

pC1[1],C2[1],...,C1[V],C2[V](C1[1], C2[1], . . . , C1[V], C2[V]) =

|V |∏
v=1

pC1[v](C1[v])pC2[v](C2[v])

(4.13)

, where v is the sample index and |V | is length of V . The first equality follows from inde-

pendent sampling, the second equality from the independence between componentsC1 and

C2, and the third equality from the samples being identically distributed (same distribution

regardless of the sample index v). As such, we may generate all samples using indepen-

dent samples from the inverse CDF transforms Φ−1Ci
(ui[v]), where ui[v], i ∈ {1, 2}, v ∈

{1, 2, . . . , V } are i.i.d. samples from the independent random variables Ui, i ∈ {1, 2},

uniformly distributed on [0, 1], and Φ−1Ci
is the inverse CDF of the mixture distribution

ΦCi
(Ci[v]) = qΦx(Ci[v]) + (1− q)Φy(Ci[v]) (4.14)

Here Φx is the logistic distribution for activation and Φy is the logistic distribution for

background as defined in Daubechies et al. [28], and q is the relative area of the activa-

tion. To achieve the required visual contrasts—small, medium, large and very large boxes,

at any desired position—we reorder the two-dimensional samples, never decoupling the

realizations of the sources. The final result, while having a similar visual appearance as

the experiments of Daubechies et al. [28] retains the joint pdf. This eliminates possible

confusion with respect to the influence of the different box parameters on the results of

our experiments. We then compute our results using four algorithms: 1) Infomax with

the standard sigmoid nonlinearity that assumes a unimodal super-Gaussian source, called

Infomax (super); 2) FastICA with the same nonlinearity used in Daubechies et al. [28],

which is ; 3) Infomax with a nonlinearity which assumes a sub-Gaussian source, called

Infomax (sub); and 4) ICA-EBM (ICA by entropy bound minimization), a much more

flexible ICA algorithm [74] able to deal with both super- and sub-Gaussian sources.

Results are averaged over 100 source realizations (each using a different random full-

rank mixing matrix) and 10 ICA runs (see Table 1). We also report two performance

metrics, first, using the metric chosen in Daubechies et al. [28], which is not invariant to

the scaling and permutation ambiguities inherent to ICA. Hence, we also report the results

www.manaraa.com

Chapter 4. Independence — A closer look 79

using the inter-symbol interference (ISI), or normalized Moreau-Amari index [82], which

is invariant to the scaling and permutation ambiguities:

ISI(P) =
1

2L(L− 1)
[
L∑
i=1

(
L∑
j=1

|pij|
maxk |pik|

− 1) +
L∑
j=1

(
L∑
i=1

|pij|
maxk |pkj|

− 1)] (4.15)

Here, pik are the elements of the matrix P = WA, and L is the number of sources. This

performance metric is bounded between 0 and 1 and the lower the ISI value the better

the separation performance (the performance metric is zero if and only if the model is

identified up to the scaling and permutation ambiguities).

As expected, the most flexible approach, the ICA-EBM algorithm, performs well (ISI<

0.1) in all cases (Table 4.1). Infomax (sub) performs well to moderately-well for the

large and medium boxes, both of which are bimodal and have a kurtosis that is close to

that of a Gaussian random variable. Infomax (super) and FastICA perform marginally

well or poorly in those cases but perform very well for the cases of very large boxes

(maximum kurtosis) and for small boxes. This makes intuitive sense, as high-kurtosis

data matches the underlying assumptions of both Infomax (super) and FastICA in that

the source distributions are unimodal and strongly super-Gaussian. These results directly

contradict the claim in Daubechies et al. [28] that Infomax (super) and FastICA select for

sparsity, since the maximum kurtosis case also has the lowest sparsity of the four (again

using the first definition of sparsity in Daubechies et al. [28].

4.5 Sparsity and sources that are mixture of Gaussians

In the sparsity section in Daubechies et al. [8, p.10421, Figure 8] there are several incorrect

statements that are important and require a careful critique. First, Daubechies et al. [28]

claims that the sources in the so-called “promotional material for ICA” are Gaussian. We

show below that they are in fact highly non-Gaussian. Second, a definition of sparsity

different from the one proposed earlier in the paper [28] is used to claim that the sources

are sparse. We show that this sparsity does not refer to the sources and in actuality they

are not sparse. Finally, we correct several other statements within that section.

www.manaraa.com

Chapter 4. Independence — A closer look 80

Counter proof to claim of Gaussian sources: To identify the distribution of the

sources in this example, it is sufficient to look along the mixing directions a and b. Ob-

servations are defined as:

r = γr1 + (1− γ)r2 (4.16)

= γ[α1a+ β1b] + (1− γ)[α2a+ β2b] (4.17)

Reordering the terms gives:

r = a[γα1 + (1− γ)α2] + b[γβ1 + (1− γ)β2]

=
[
a b

]
s

= As (4.18)

sa = γα1 + (1− γ)α2 (4.19)

sb = γβ2 + (1− γ)β2 (4.20)

Thus, the sources can be identified as mixture distributions. Their distributions are given

as:

psa = λpα1 + (1− λ)pα2psb = λpβ2 + (1− λ)pβ2 (4.21)

where λ is the parameter of the Bernoulli distribution of which γ are the realizations.

Notice that contrary to what one might expect, a mixture of Gaussian random variables

through a Bernoulli random variable as above, in general does not yield a Gaussian ran-

dom variable, but rather a random variable whose pdf is a weighted mixture of two inde-

pendent Gaussian pdfs. Finally, since the distributions pα1 , pα2 , pβ1 , and pβ2(pα1 = pβ2 =

p(t)) are all Gaussian and no two distributions in a mixture have the same variance—e.g.,

for the choice in Daubechies et al. [8], pα2(t) = 10pα1(10t), which implies V ar(α2) =

100V ar(α1) = 100σ2 — the resulting distribution must be non-Gaussian whenever λ /∈

{0, 1}. Hence the statement in Daubechies et al. [8] that “Each component has a Gaus-

sian distribution”, is incorrect; the components are in actuality highly non-Gaussian (see

Figure 2 (A-B)).

Critique of the claim of sparse components: In the same section there is a claim

that the components (i.e. sources) in this example are sparse: “Fig. 8 depicts processes

www.manaraa.com

Chapter 4. Independence — A closer look 81

with 2 sparse rather than independent components”. However, sparsity as defined in this

section does not refer to the components at all; rather, it refers to parts of the components

together, specifically, the 2D Gaussian vectors
[
α1 β1

]
and

[
α2 β2

]
which are 2D, 1-

sparse vector processes. In actuality, however, the components sa and sb are not sparse for

the choice of λ = 50% and λ = 30% used in M1 and M2 respectively. This is because

V ar(sa) = σ2 99λ+1
100

and V ar(sb) = σ2 100−99λ
100

, which are typically much greater than

zero. Therefore, it cannot be sparsity that is driving these algorithms towards the solution.

A few additional clarifications: There are two other sentences in the section on spar-

sity in Daubechies et al. [8] which require some clarification. First, in the sentence

“However, in the example given here, is Gaussian; because ICA methods cannot sepa-

rate mixtures of independent Gaussian processes, the successful separation of components

by Infomax and FastICA underscores again their ability to identify sparse components”

p(t) is not the distribution of the components . In addition, the statement instills belief that

this example has only a single mixing process, when in fact it has two: 1) the mixing of

the (Gaussian) αk’s and βk’s through λ , which gives the (non-Gaussian) sources si, and 2)

the mixing of sources si through the mixing matrix A =
[
a b

]
. The statement suggests

Infomax and FastICA can unmix the Gaussian random variables αk, βk which constitute

the mixture distribution of a source (i.e. the two parts of a single source si) which is clearly

incorrect (they unmix the sources si, not their subparts). Lastly, the sentence “Infomax or

FastICA identify the 2 special directions a and b correctly as the components” incorrectly

labels a and b as components, when they actually are the mixing coefficients that make up

theA matrix.

4.6 ICA of sources with mixture of Gaussians distribution

The discussion related to the example in Figure 8 of the original paper [8] initially notes

that mixtures of independent Gaussian random variables cannot be recovered by ICA,

which is true if each source comes from a single Gaussian distribution, and the algorithms

are only based on higher-order statistics, as in the case of Infomax and FastICA (i.e., the

algorithms do not exploit sample correlation). However, these algorithms (and many oth-

www.manaraa.com

Chapter 4. Independence — A closer look 82

Figure 4.2: The distribution of sources and mixtures for λ = 30%(M2). We plot (A-
C) the distribution of sources, and (D) the contour plot of mixtures for the case of λ =
30%(M2). Contrary to the claim made in Daubechies et al., the sources have in fact very
peaky and heavy-tailed distributions and are not at all close to a Gaussian distribution. For
comparison purposes we also present Gaussian distribution curves (blue, A-B).

ers that have been developed and also applied to fMRI data [14]) can separate sources

whose probability density can be represented via a Gaussian mixture model, as long as

the resulting distribution itself is not a Gaussian. The latter is the case in the example

presented in Figure 8 of Daubechies et al. [8], which was incorrectly seen as evidence

that sparsity was the driving force helping ICA to recover Gaussian sources. We showed

that the sparsity mentioned in Daubechies et al. [8] is not related to the sources. Also,

this example utilizes a mixture of Gaussians as the sources. With the parameters described

in Daubechies et al. [8], the sources are in fact super-Gaussian (i.e. they have positive

excess kurtosis, as shown in Table 4.2). Infomax and FastICA with nonlinearities selected

www.manaraa.com

Chapter 4. Independence — A closer look 83

to match a super-Gaussian distribution are expected to successfully separate such sources,

as also is the more flexible ICA-EBM algorithm [12]. Conversely, Infomax with a nonlin-

earity selected to be sensitive to sub-Gaussian sources is expected to exhibit suboptimal

performance (see performance Table 2). This can also be visualized in Figure 2 where we

show the sources and the mixtures for the case of λ = 30% as described in Daubechies

et al. [8]. This example again points to the confusion discussed in Section 4 with respect

to the definition of the underlying ICA sources, i.e., what is actually being simulated and

what is assumed in Daubechies et al. [8].

Figure 4.3: Sparsity measures for three different coordinate system origins z0. Sparsity
as measured with respect to different coordinate system origins z0, as a function of the
relative size of the active region. Remark that for a relative size of zero, only background
samples are present and, thus, the mean of the mixture model coincides with the mean of
the background (and the two sparsity measures correspond at this point). An analogous
observation can be made for a relative size of one, now with respect to the activity (signal
samples).

www.manaraa.com

Chapter 4. Independence — A closer look 84

4.7 On the definition of sparsity

In coding theory, whether in transmission or in storage of a signal, a trade-off often is nec-

essary between attainable compression rates and signal restoration error. In this context,

sparsity is a signal property that allows for high compression rates, while compromising

only little in the restoration error. A sparse signal generally consists of N = |V | coeffi-

cients of which n << N coefficients concentrate all information within the signal. Indeed,

under the hypothesis that coding a string of zeroes has little cost in resources with respect

to coding whatever floating/integer number, all other N − n coefficients could be set to

zero without significant loss of information but with a substantial gain in compression rate.

A legitimate question now is what about a signal of which all but 1 coefficient differ

from a number, say, µ. Let that one coefficient equal zero. Is that signal sparse? Under

the above definition, the signal would not be considered as sparse, since only a single co-

efficient could be coded as a zero without introducing a reconstruction error. However, if

we would allow for coding a shift by −µ, then coding N − 1 coefficients as zero would

result in a reconstruction error ε upper bounded by ‖µ‖. It is clear from this very simple

example that it is important to appropriately choose the origin for the coordinate system

(z0) in which one foresees to evaluate the sparseness of the signal. For the model consid-

ered in Daubechies et al. [8], we plot the sparsity measure
√
Ez{(z − z0)2}/Ez{|z − z0|}

for three different choices of z0. Here, the ordinary sparsity measure (as understood in

Daubechies et al. [8]) is taken with respect to z0 = −1, i.e., the mean of the “background

distribution”, with sparsity decreasing as the active region size increases (see Figure 3).

Note that for fMRI we typically use zero-mean samples when using ICA, thus measuring

our sparsity with respect to the mean of the mixture model.

4.8 On the application of ICA to fMRI

We also note that, contrary to the claims in Daubechies et al. [8], Infomax and FastICA,

though the most widely used at the time—due in large part to their availability in fMRI-

friendly software packages—were not the only ICA algorithms that had been applied to

www.manaraa.com

Chapter 4. Independence — A closer look 85

fMRI analysis with success at the time [26, 46]. This trend has continued and in recent

years even more flexible algorithms such as those based on entropy bound minimization

(EBM) or full blind source separation (FBSS) have been used increasingly to analyze fMRI

data, outperforming both Infomax and FastICA [15, 72, 35]. In general, we would recom-

mend that these and other more recent algorithms preferentially be applied to fMRI, as they

are generally more robust to non-super-Gaussian and/or multimodal distributed sources

which can occur in real fMRI data, observed in the context of certain artifacts. These

algorithms and many others are implemented in the group ICA of fMRI toolbox (GIFT;

http://mialab.mrn.org/software/gift). An interesting historical note is that before extended

Infomax [69] was introduced, there was confusion as to how ICA of fMRI really worked

when it was applied as temporal ICA and early results indeed were not convincing—since

time courses are more likely to be sub-Gaussian than super-Gaussian [80], whereas in the

spatial ICA case super-Gaussian sources are more common. Another important point re-

garding the real fMRI experiment mentioned in Daubechies et al. [8] is that each voxel

is identified as belonging to only one underlying source (page 10416, left col, third para-

graph). Such an approach is perhaps a reflection of the way one might approach an fMRI

experiment with a sparsity focus, but in reality, and more in line with the complexity and

connectivity of the human brain, each voxel typically has a contribution from multiple

components (sources), making this an ideal case for ICA.

4.9 Conclusions

We reviewed the main claim made in Daubechies et al. [8] and its supporting evidence.

We revisit the initial experiments and present new evidence showing conclusively that the

arguments fall short of supporting the claim that Infomax and FastICA select for sparsity

and not for independence. While pointing out that the use of other metrics for fMRI

analysis such as sparsity—besides independence, which is widely used—is a reasonable

goal, the claims that are used to justify this desire are misleading at best and in some cases

are simply incorrect. In summary, we show that ICA algorithms, including FastICA and

Infomax, are indeed doing what they were designed to do, maximize independence.

www.manaraa.com

Chapter 4. Independence — A closer look 86

Boxes Size Observed Features (good is ISI < 0.1)
Small Source C1 (excess) Kurtosis [< 0.1 is Gauss-like] : 0.8829
Unimodal, super- Source C2 (excess) Kurtosis [< 0.1 is Gauss-like] : 0.8107
Gaussian sources Mutual information Between Sources C1 and C2 : 0.0920

Algorithm Daubechies Amari
FastICA FastICA 0.0547 ± 0.0150 0.0383
Infomax (super), Infomax (super) 0.0331 ± 0.0002 0.0228
and ICA-EBM Infomax (sub) 1.0493 ± 0.0015 0.9499
perform well ICA-EBM 0.0554 ± 0.0066 0.0388
Medium Source C1 (excess) Kurtosis [< 0.1 is Gauss-like] : 0.2564
Bimodal, close-to Source C2 (excess) Kurtosis [< 0.1 is Gauss-like] : 0.0879
Gaussian sources Mutual information Between Sources C1 and C2 : 0.0929

Algorithm Daubechies Amari
ICA-EBM performs FastICA 0.2068 ± 0.0662 0.1464
good, Infomax (sub), Infomax (super) 0.8722 ± 0.0651 0.7434
performs fair Infomax (sub) 0.1597 ± 0.0058 0.1144

ICA-EBM 0.0693±0.0105 0.0488
Large Source C1 (excess) Kurtosis [< 0.1 is Gauss-like] : 0.0010
Bimodal, close-to Source C2 (excess) Kurtosis [< 0.1 is Gauss-like] : 0.0762
Gaussian sources Mutual information Between Sources C1 and C2 : 0.0892

Algorithm Daubechies Amari
ICA-EBM FastICA 0.4081 ± 0.1003 0.3102
and Infomax (sub) Infomax (super) 1.0297 ± 0.0009 0.9236
perform well Infomax (sub) 0.0401 ± 0.0004 0.0260

ICA-EBM 0.0145 ± 0.0008 0.0094
Very Large Source C1 (excess) Kurtosis [< 0.1 is Gauss-like] : 5.6432
(max kurtosis) Source C2 (excess) Kurtosis [< 0.1 is Gauss-like] : 5.6394
Unimodal, super- Mutual information Between Sources C1 and C2 : 0.0686
Gaussian sources. Algorithm Daubechies Amari
FastICA, FastICA 0.0263 ± 0.0078 0.0180
Infomax (super) Infomax (super) 0.0131 ± 0.0003 0.0086
and ICA-EBM Infomax (sub) 1.0711 ± 0.0014 0.9762
perform well ICA-EBM 0.0218 ± 0.0019 0.0148

Table 4.1: Source estimates for the four cases indicated in Figure 1 as in Example 2 of the
original paper [8]. The algorithms behave as one would expect if they are selecting for
independence. For the bimodal or Gaussian-like cases, ICA-EBM and Infomax (sub) do
well, and for the unimodal or maximum kurtosis or low sparsity case Infomax-super, Fas-
tICA and ICA-EBM all do extremely well. Numbers in boldface indicate when separation
was good.

www.manaraa.com

Chapter 4. Independence — A closer look 87

Observed Features (good is < 0.1)
Property Source a (sa) Source b (sb)
Negentropy 0.2753 0.3708
(excess) Kurtosis 3.0630 3.5225
Algorithm Daubechies Amari
FastICA 0.0154 0.0108
Infomax (super) 0.0076 0.0052
Infomax (sub) 1.0758 0.9899
ICA-EBM 0.0059 0.0039

Table 4.2: Tabulated results for the so-called [28] ICA “promotional material”. Both
Infomax (super) and FastICA do successfully separate (zero indicates perfect separation)
the super-Gaussian sources sa and sb . Note the excess kurtosis is more than 3 for both
sources. Numbers in boldface indicate when separation was good.

www.manaraa.com

88

Chapter 5

Conclusions and Future Work

Connections: We explored the structural connections between nonnegative least squares

(NNLS), nonnegative matrix factorization (NMF) and support vector machines (SVM). In

particular, we showed a reduction from totally nonnnegative least squares to support vector

machines. This gave us insight into the connection between nonnegativity and sparsity and

further enabled us to propose an efficient algorithm to solve the TNNLS problem. Also,

we show that nonnegativity corresponds to sparsity depending on how many elements lie

on the maximum-margin hyperplane. This explains the connection between nonnegativity

and sparsity posed in the work on compressive sensing [89]. In particular, it enabled en-

abled us to reduce the planning time for a cancer treatment planning system by an order of

magnitude compared to the state-of-the-art solvers. Also, we exploited the structural con-

nection between NMF and SVM to propose novel algorithms for both the SVM and NMF

problems. Recently, an equivalence between L2-SVM and LASSO has been shown [53].

That is given an L2-SVM problem, we can construct a LASSO problem with an equivalent

solution and vice-versa. Can we expect to find a similar equivalence/reduction from NNLS

to SVM? This will enable one to use existing fast SVM solvers to general NNLS problems.

Also, it would be interesting to extend the algorithms to the distributed setting where the

data is split across the computational nodes. Other issues such as privacy [19] may need

to be addressed in this setting. One such scenario is when maintaining confidentiality of

medical records. We derived simple multiplicative update rules for solving the maximum-

www.manaraa.com

Chapter 5. Conclusions and Future Work 89

margin classifier problem in SVMs. Coordinate descent is another popular approach to

solve SVM problems [50]. Recently, coordinate-descent methods have been accelerated

to reach a quadratic rate of convergence in the parallel setting on general convex prob-

lems [98, 86]. It would be interesting to compare the performance of coordinate-descent

methods versus multiplicative updates in GPU settings [10]. Also, multiplicative updates

only have a linear rate of convergence. Can they also be accelerated to achieve a quadratic

rate of convergence?

Sparsity: We developed a block coordinate descent for solving sparse NMF problem

and showed it to be an order of magnitude faster than the competing algorithms on real-

world datasets consisting of faces, structural and functional MRI images. Our algorithm

is faster over a range of sparsity values and generally performs better when the sparsity

is higher. The speed up is mainly because of the sequential nature of the updates in con-

trast to the previously employed batch updates [48]. Also, we presented an exact and

efficient algorithm to solve the problem of maximizing a linear objective with a sparsity

constraint, which is an improvement over the previous approach [48]. Faster algorithms

for the projection problem have also been presented [116, 108] but at a price that they

do not completely characterize the solution over all sparsity values [95]. Our approach

can be extended to other NMF variants [47]. Another possible application is the sparse

version of nonnegative tensor factorization. A different research direction would be to

scale our algorithm to handle large datasets by chunking [78] and/or take advantage of

distributed/parallel computational settings [9]. Other extensions include handling orthog-

onality [32, 22], convolutive [105] or Lp-norm constraints.

ICA: Finally, we investigated a recent claim in a PNAS article [28] that sparsity and

not independence is the cause for the success of independent component analysis (ICA)

algorithms in fMRI analysis. Sparsity has been shown to be successful for a wide range

of domains and it can play an important role in fMRI analysis. Recent work [64] has ex-

ploited sparsity combined with orthogonality to learn overcomplete representations. So,

it might fruitful to further explore the connection between sparsity, nonnegativity and in-

www.manaraa.com

Chapter 5. Conclusions and Future Work 90

dependence. Nonnegativity combined with orthogonality requirements has been exploited

to achieve independence [113]. Conditions under which the original matrix factors, given

just the data matrix, can be recovered are being studied for dictionary learning [106]. It

would be interesting to extend these result for nonnegative matrix factorization. Initial

results for recoverability in the case of ICA have begun to appear [2].

www.manaraa.com

91

References

[1] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a

nonnegative matrix factorization – provably. In Proceedings of the 44th symposium

on Theory of Computing, STOC ’12, pages 145–162, New York, NY, USA, 2012.

ACM.

[2] Sanjeev Arora, Rong Ge, Ankur Moitra, and Sushant Sachdeva. Provable ica with

unknown gaussian noise, and implications for gaussian mixtures and autoencoders.

arXiv preprint arXiv:1206.5349, 2012.

[3] Hagai Attias. Independent factor analysis. Neural computation, 11(4):803–851,

1999.

[4] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging lapack’s

least-squares solver. SIAM Journal on Scientific Computing, 32(3):1217–1236,

2010.

[5] A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind sep-

aration and blind deconvolution. Neural Computation, 7(6):1129–1159, November

1995.

[6] M. H. Van Benthem and M. R. Keenan. Fast algorithm for the solution of large-

scale non-negativity-constrained least squares problems. Journal of chemometrics,

18(10):441–450, 2004.

[7] Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and Robert J

Plemmons. Algorithms and applications for approximate nonnegative matrix fac-

torization. Computational Statistics & Data Analysis, 52(1):155–173, 2007.

www.manaraa.com

REFERENCES 92

[8] C. Boutsidis and P. Drineas. Random projections for the nonnegative least-squares

problem. Linear Algebra and its Applications, 431(5-7):760–771, 2009.

[9] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel

coordinate descent for L1-regularized loss minimization. In ICML, pages 321–328,

2011.

[10] Matthew Brand and Donghui Chen. Parallel quadratic programming for image pro-

cessing. In ICIP, pages 2261–2264, 2011.

[11] R. Bro and S. De Jong. A fast non-negativity-constrained least squares algorithm.

Journal of Chemometrics, 11(5):393–401, 1997.

[12] A. M. Bruckstein, M. Elad, and M. Zibulevsky. A non-negative and sparse enough

solution of an underdetermined linear system of equations is unique. Submitted to

IEEE Transactions on Information Theory, 2008.

[13] G. Buchsbaum and O. Bloch. Color categories revealed by non-negative matrix

factorization of munsell color spectra. Vision research, 42(5):559–563, 2002.

[14] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar. A method for making

group inferences from functional MRI data using independent component analysis.

Human Brain Mapping, 14(3):140–151, 2001.

[15] Vince D Calhoun and T Adali. Multisubject independent component analysis of

fmri: a decade of intrinsic networks, default mode, and neurodiagnostic discovery.

Biomedical Engineering, IEEE Reviews in, 5:60–73, 2012.

[16] Cardoso. High-order contrasts for independent component analysis. Neural Com-

putation, 11(1):157, 1999.

[17] Ali Taylan Cemgil. Bayesian inference for nonnegative matrix factorisation models.

Computational Intelligence and Neuroscience, 2009, 2009.

[18] C. I. Chang and D. C. Heinz. Constrained subpixel target detection for re-

motely sensed imagery. Geoscience and Remote Sensing, IEEE Transactions on,

38(3):1144–1159, 2000.

www.manaraa.com

REFERENCES 93

[19] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially

private empirical risk minimization. The Journal of Machine Learning Research,

12:1069–1109, 2011.

[20] Yunmei Chen and Xiaojing Ye. Projection onto a simplex. arXiv preprint

arXiv:1101.6081, 2011.

[21] L. Chin and W. Regine. Principles and practice of stereotactic radiosurgery.

Springer Verlag, 2008.

[22] Seungjin Choi. Algorithms for orthogonal nonnegative matrix factorization. In

Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational In-

telligence). IEEE International Joint Conference on, pages 1828–1832. IEEE, 2008.

[23] A. Cichocki and A. H. Phan. Fast local algorithms for large scale nonnegative ma-

trix and tensor factorizations. IEICE Transactions on Fundamentals of Electronics,

92:708–721, 2009.

[24] Andrzej Cichocki and Rafal Zdunek. Regularized alternating least squares algo-

rithms for non-negative matrix/tensor factorization. In ISNN ’07: Proceedings of

the 4th international symposium on Neural Networks, pages 793–802, Berlin, Hei-

delberg, 2007. Springer-Verlag.

[25] J. E. Cohen and U. G. Rothblum. Nonnegative ranks, decompositions, and factoriza-

tions of nonnegative matrices. Linear Algebra and its Applications, 190:149–168,

1993.

[26] Nicolle Correa, Tülay Adalı, and Vince D Calhoun. Performance of blind source

separation algorithms for fmri analysis using a group ica method. Magnetic reso-

nance imaging, 25(5):684–694, 2007.

[27] Thilo-Thomas Frießand Nello Cristianini and Colin Campbell. The Kernel-Adatron

algorithm: a fast and simple learning procedure for support vector machines. In

Proc. 15th International Conf. on Machine Learning, pages 188–196. Morgan

Kaufmann, San Francisco, CA, 1998.

www.manaraa.com

REFERENCES 94

[28] I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden, K. D’Ardenne,

W. Richter, JD Cohen, and J. Haxby. Independent component analysis for brain

fMRI does not select for independence. Proceedings of the National Academy of

Sciences, 106(26):10415–10422, 2009.

[29] Inderjit Dhillon and Suvrit Sra. Generalized nonnegative matrix approximations

with Bregman divergences. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Ad-

vances in Neural Information Processing Systems 18, pages 283–290. MIT Press,

Cambridge, MA, 2006.

[30] Inderjit S Dhillon and Suvrit Sra. Generalized nonnegative matrix approximations

with bregman divergences. In NIPS, volume 18, 2005.

[31] Chris Ding, Tao Li, and Michael I. Jordan. Convex and semi-nonnegative matrix

factorizations. LBNL Tech Report 60428, 2006.

[32] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative matrix

t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, KDD ’06, pages

126–135, New York, NY, USA, 2006. ACM.

[33] D. L. Donoho and J. Tanner. Thresholds for the recovery of sparse solutions via l1

minimization. In Information Sciences and Systems, 2006 40th Annual Conference

on, pages 202–206. IEEE, 2006.

[34] David Donoho and Victoria Stodden. When does non-negative matrix factorization

give a correct decomposition into parts? In Sebastian Thrun, Lawrence Saul, and

Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems

16. MIT Press, Cambridge, MA, 2004.

[35] Wei Du, Hualiang Li, Xi-Lin Li, Vince D Calhoun, and Tülay Adali. Ica of fmri

data: performance of three ica algorithms and the importance of taking correlation

information into account. In Biomedical Imaging: From Nano to Macro, 2011 IEEE

International Symposium on, pages 1573–1576. IEEE, 2011.

www.manaraa.com

REFERENCES 95

[36] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient

projections onto the l1-ball for learning in high dimensions. In Proceedings of the

25th international conference on Machine learning, pages 272–279, 2008.

[37] J. Eggert and E. Körner. Sparse coding and NMF. Neural Networks, 2004. Pro-

ceedings. 2004 IEEE International Joint Conference on, 4:2529–2533, 25-29 July

2004.

[38] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative matrix fac-

torization with the itakura-saito divergence: With application to music analysis.

Neural computation, 21(3):793–830, 2009.

[39] V. Franc, V. Hlavac, and M. Navara. Sequential coordinate-wise algorithm for the

non-negative least squares problem. In Computer Analysis of Images and Patterns,

page 407, 2005.

[40] V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector

machines. In Proceedings of the 25th international conference on Machine learn-

ing, pages 320–327. ACM, 2008.

[41] Nicolas Gillis and François Glineur. Using underapproximations for sparse non-

negative matrix factorization. Pattern recognition, 43(4):1676–1687, 2010.

[42] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns

Hopkins University Press, Baltimore, MD, USA, 1996.

[43] Matthias Heiler and Christoph Schnörr. Learning sparse representations by non-

negative matrix factorization and sequential cone programming. The Journal of

Machine Learning Research, 7:2006, 2006.

[44] S. Hochreiter and M. C. Mozer. Monaural separation and classification of mixed

signals: A support-vector regression perspective. In 3rd International Conference

on Independent Component Analysis and Blind Signal Separation, San Diego, CA.

Citeseer, 2001.

www.manaraa.com

REFERENCES 96

[45] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Ma-

chine Learning, 42(1):177–196, 2001.

[46] Baoming Hong, Godfrey D Pearlson, and Vince D Calhoun. Source density-driven

independent component analysis approach for fmri data. Human brain mapping,

25(3):297–307, 2005.

[47] P. O. Hoyer. Non-negative sparse coding. In Neural Networks for Signal Processing,

2002. Proceedings of the 2002 12th IEEE Workshop on, pages 557–565, 2002.

[48] Patrik O. Hoyer. Non-negative matrix factorization with sparseness constraints. The

Journal of Machine Learning Research, 5:1457–1469, December 2004.

[49] C. J. Hsieh and I. Dhillon. Fast coordinate descent methods with variable selection

for non-negative matrix factorization. ACM SIGKDD Internation Conference on

Knowledge Discovery and Data Mining, pages 1064–1072, 2011.

[50] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundarara-

jan. A dual coordinate descent method for large-scale linear SVM. In Proceedings

of the 25th international conference on Machine learning, ICML ’08, pages 408–

415, New York, NY, USA, 2008. ACM.

[51] Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Trans. Inf.

Theor., 55:4723–4741, October 2009.

[52] Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent com-

ponent analysis. Neural computation, 9(7):1483–1492, 1997.

[53] Martin Jaggi. An equivalence between the lasso and support vector machines. arXiv

preprint arXiv:1303.1152, 2013.

[54] Thorsten Joachims. Making large-scale SVM learning practical. LS8-Report 24,

Universität Dortmund, LS VIII-Report, 1998.

[55] Vojislav Kecman, Michael Vogt, and Te Ming Huang. On the equality of kernel

adatron and sequential minimal optimization in classification and regression tasks

and alike algorithms for kernel machines. In ESANN, pages 215–222, 2003.

www.manaraa.com

REFERENCES 97

[56] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iter-

ative nearest point algorithm for support vector machine classifier design. Neural

Networks, IEEE Transactions on, 11(1):124–136, January 2000.

[57] D. Kim, S. Sra, and I. S. Dhillon. A new projected quasi-newton approach for the

nonnegative least squares problem. Citeseer, 2006.

[58] Hyunsoo Kim and Haesun Park. Sparse non-negative matrix factorizations via alter-

nating non-negativity-constrained least squares for microarray data analysis. Bioin-

formatics, 23(12):1495–1502, 2007.

[59] J. Kim and H. Park. Fast active-set-type algorithms for L1-regularized linear re-

gression. Proc. AISTAT, pages 397–404, 2010.

[60] Jingu Kim and Haesun Park. Toward faster nonnegative matrix factorization: A

new algorithm and comparisons. Data Mining, IEEE International Conference on,

0:353–362, 2008.

[61] T. F. De Laney and H. M. Kooy. Proton and charged particle radiotherapy. Lip-

pincott Williams & Wilkins, 2007.

[62] CL Lawson and RJ Hanson. Solving least squares problems, 340 pp. Prentice-Hall,

Upper Saddle River, NJ, 1974.

[63] W. H. Lawton and E. A. Sylvestre. Self modeling curve resolution. Technometrics,

pages 617–633, 1971.

[64] Quoc V Le, Alexandre Karpenko, Jiquan Ngiam, and Andrew Y Ng. Ica with re-

construction cost for efficient overcomplete feature learning. In NIPS, pages 1017–

1025, 2011.

[65] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, October 1999.

[66] Daniel D. Lee and Sebastian H. Seung. Algorithms for non-negative matrix factor-

ization. In NIPS [67], pages 556–562.

www.manaraa.com

REFERENCES 98

[67] Daniel D. Lee and Sebastian H. Seung. Algorithms for non-negative matrix factor-

ization. In NIPS, pages 556–562, 2000.

[68] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding

algorithms. In Bernhard Schölkopf, John C. Platt, and Thomas Hoffman, editors,

Advances in Neural Information Processing Systems 19, Proceedings of the Twen-

tieth Annual Conference on Neural Information Processing Systems, Vancouver,

British Columbia, Canada, December 4-7, 2006. MIT Press, 2007.

[69] Te-Won Lee, Mark Girolami, and Terrence J Sejnowski. Independent component

analysis using an extended infomax algorithm for mixed subgaussian and super-

gaussian sources. Neural computation, 11(2):417–441, 1999.

[70] F. Li, Y. Yang, and E. Xing. From lasso regression to feature vector machine.

Advances in Neural Information Processing Systems, 18:779, 2006.

[71] Hualiang Li, Tülay Adali, Nicolle Correa, Pedro A Rodriguez, and Vince D Cal-

houn. Flexible complex ica of fmri data. In Acoustics Speech and Signal Processing

(ICASSP), 2010 IEEE International Conference on, pages 2050–2053. IEEE, 2010.

[72] Hualiang Li, Nicolle M Correa, Pedro A Rodriguez, Vince D Calhoun, and Tülay

Adali. Application of independent component analysis with adaptive density model

to complex-valued fmri data. Biomedical Engineering, IEEE Transactions on,

58(10):2794–2803, 2011.

[73] Liangda Li, Guy Lebanon, and Haesun Park. Fast bregman divergence nmf using

taylor expansion and coordinate descent. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 307–315.

ACM, 2012.

[74] Xi-Lin Li and Tülay Adali. Complex independent component analysis by entropy

bound minimization. Circuits and Systems I: Regular Papers, IEEE Transactions

on, 57(7):1417–1430, 2010.

[75] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.

Neural Comp., 19(10):2756–2779, October 2007.

www.manaraa.com

REFERENCES 99

[76] S. Luan, N. Swanson, Z. Chen, and L. Ma. Dynamic gamma knife radiosurgery.

Physics in Medicine and Biology, 54:1579, 2009.

[77] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization

and sparse coding. The Journal of Machine Learning Research, 11:19–60, 2010.

[78] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for

matrix factorization and sparse coding. The Journal of Machine Learning Research,

11:19–60, 2010.

[79] M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell,

and T. J. Sejnowski. Analysis of fMRI data by blind separation into independent

spatial components. Human Brain Mapping, 6(3):160–188, 1998.

[80] Martin J McKeown, Lars Kai Hansen, and Terrence J Sejnowsk. Independent com-

ponent analysis of functional mri: what is signal and what is noise? Current opinion

in neurobiology, 13(5):620–629, 2003.

[81] M. Merritt and Y. Zhang. Interior-point gradient method for large-scale totally non-

negative least squares problems. Journal of optimization theory and applications,

126(1):191–202, 2005.

[82] Eric Moreau and Odile Macchi. High-order contrasts for self-adaptive source sepa-

ration. International Journal of Adaptive Control and Signal Processing, 10(1):19–

46, 1996.

[83] M. Morup and L. H. Clemmensen. Multiplicative updates for the LASSO. In

Machine Learning for Signal Processing, 2007 IEEE Workshop on, pages 33–38.

IEEE, 2007.

[84] M. Mørup and L. H. Clemmensen. Multiplicative updates for the LASSO,. Machine

Learning for Signal Processing, 2007 IEEE Workshop on, pages 33–38, 2007.

[85] Morten Mørup, Kristoffer Hougaard Madsen, and Lars Kai Hansen. Approximate

L0 constrained non-negative matrix and tensor factorization. In ISCAS, pages 1328–

1331, 2008.

www.manaraa.com

REFERENCES 100

[86] Indraneel Mukherjee, Kevin Canini, Rafael Frongillo, and Yoram Singer. Paral-

lel boosting with momentum. In Machine Learning and Knowledge Discovery in

Databases, pages 17–32. Springer, 2013.

[87] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization

problems. CORE Discussion Papers, 2010.

[88] C. L. Blake D. J. Newman and C. J. Merz. UCI repository of machine learning

databases, 1998.

[89] P. D. O’Grady and S. T. Rickard. Compressive sampling of non-negative signals.

In Machine Learning for Signal Processing, 2008. MLSP 2008. IEEE Workshop on,

pages 133–138. IEEE, 2008.

[90] Paul D. O‘Grady and Barak A. Pearlmutter. Convolutive non-negative matrix fac-

torisation with a sparseness constraint. In Proceedings of the IEEE International

Workshop on Machine Learning for Signal Processing (MLSP 2006), pages 427–

432, Maynooth, Ireland, September 2006.

[91] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support

vector machines. Neural Networks for Signal Processing [1997] VII. Proceedings

of the 1997 IEEE Workshop, pages 276–285, September 1997.

[92] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D. Pascual-

Marqui. Nonsmooth nonnegative matrix factorization (nsNMF). Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 28(3):403–415, March 2006.

[93] R. Peharz and F. Pernkopf. Sparse nonnegative matrix factorization with l0-

constraints. Neurocomputing, 2011.

[94] J. Platt. Sequential minimal optimization: A fast algorithm for training support

vector machines, 1998.

[95] Vamsi K Potluru, Jonathan Le Roux, Barak A Pearlmutter, John R Hershey, and

Matthew E Brand. Coordinate descent for mixed-norm nmf. NIPS Workshop:

Greedy algorithms, Frank-wolfe and Friends - A modern perspective, 2013.

www.manaraa.com

REFERENCES 101

[96] Vamsi K. Potluru, Sergey M. Plis, Shuang Luan, Vince D. Calhoun, and Thomas P.

Hayes. Sparseness and a reduction from totally nonnegative least squares to SVM.

In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages

1922–1929, 31 2011-August 5 2011.

[97] Vamsi K. Potluru, Sergey M. Plis, Morten Morup, Vincent D. Calhoun, and Terran

Lane. Efficient multiplicative updates for support vector machines. In Proceedings

of the 2009 SIAM Conference on Data Mining (SDM), 2009.

[98] Peter Richtárik and Martin Takáč. Distributed coordinate descent method for learn-

ing with big data. arXiv preprint arXiv:1310.2059, 2013.

[99] Ruslan Salakhutdinov and Sam Roweis. Adaptive overrelaxed bound optimization

methods. In Proceedings of the International Conference on Machine Learning,

volume 20, pages 664–671, 2003.

[100] M. N. Schmidt and R. K. Olsson. Single-channel speech separation using sparse

non-negative matrix factorization. In International Conference on Spoken Language

Processing (INTERSPEECH), volume 2, page 1. Citeseer, 2006.

[101] Mikkel N Schmidt, Ole Winther, and Lars Kai Hansen. Bayesian non-negative

matrix factorization. In Independent Component Analysis and Signal Separation,

pages 540–547. Springer, 2009.

[102] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond (Adaptive Computation and Machine

Learning). The MIT Press, 2001.

[103] Fei Sha, Lawrence K. Saul, and Daniel D. Lee. Multiplicative updates for large

margin classifiers. In Proceedings of the Sixteenth Annual Conference on Compu-

tational Learning Theory (COLT), Washington D.C., USA, 2003.

[104] Fei Sha, Lawrence K. Saul, and Daniel D. Lee. Multiplicative updates for non-

negative quadratic programming in support vector machines. In Sebastian Thrun

Suzanna Becker and Klaus Obermayer, editors, Advances in Neural Information

Processing Systems 15, Cambridge, MA, 2003. MIT Press.

www.manaraa.com

REFERENCES 102

[105] Paris Smaragdis. Non-negative matrix factor deconvolution; extraction of multiple

sound sources from monophonic inputs. International Congress on Independent

Component Analysis and Blind Signal Separation, September 2004.

[106] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used

dictionaries. In Proceedings of the Twenty-Third international joint conference on

Artificial Intelligence, pages 3087–3090. AAAI Press, 2013.

[107] Fabian J Theis, Kurt Stadlthanner, and Toshihisa Tanaka. First results on uniqueness

of sparse non-negative matrix factorization. In Proceedings of the 13th European

Signal Processing Conference (EUSIPCO05), 2005.

[108] Markus Thom and Günther Palm. Efficient sparseness-enforcing projections. arXiv

preprint arXiv:1303.5259, 2013.

[109] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[110] Tuomas Virtanen. Monaural sound source separation by nonnegative matrix fac-

torization with temporal continuity and sparseness criteria. Audio, Speech, and

Language Processing, IEEE Transactions on, 15(3):1066–1074, 2007.

[111] Felix Weninger, Jordi Feliu, and Bjorn Schuller. Supervised and semi-supervised

suppression of background music in monaural speech recordings. In Acoustics,

Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on,

pages 61–64. IEEE, 2012.

[112] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, original edition, June

2009.

[113] Kevin W Wilson and Bhiksha Raj. Spectrogram dimensionality reduction with

independence constraints. In Acoustics Speech and Signal Processing (ICASSP),

2010 IEEE International Conference on, pages 1938–1941. IEEE, 2010.

[114] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix

factorization. In Proceedings of the 26th annual international ACM SIGIR confer-

www.manaraa.com

REFERENCES 103

ence on Research and development in informaion retrieval, pages 267–273. ACM,

2003.

[115] Y Kenan Yılmaz, A Taylan Cemgil, and Umut Simsekli. Generalised coupled tensor

factorisation. In Advances in Neural Information Processing Systems, pages 2151–

2159, 2011.

[116] Adams Wei Yu, Hao Su, and Li Fei-Fei. Efficient euclidean projections onto the

intersection of norm balls. arXiv preprint arXiv:1206.4638, 2012.

[117] Rafal Zdunek and Andrzej Cichocki. Fast nonnegative matrix factorization algo-

rithms using projected gradient approaches for large-scale problems. Computa-

tional Intelligence and Neuroscience, page 13, 2008.

[118] E. Zeng and M. Ogihara. Nonnnegative least square–A new look into SAGE data.

In Proceedings of CSB, volume 9, 2009.

[119] Michael Zibulevsky and Barak A. Pearlmutter. Blind source separation by sparse

decomposition in a signal dictionary. Neural Computation, 13(4):863–882, 2001.

